Citation: Li Xuedong, Lang Xiandong, Song Qingwen, Guo Yakun, He Liangnian. Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 744-751. doi: 10.6023/cjoc201512037 shu

Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO2

  • Corresponding author: He Liangnian, 
  • Received Date: 25 December 2015
    Available Online: 30 January 2016

    Fund Project: 国家自然科学基金(Nos.21472103,21121002) (Nos.21472103,21121002)教育部博士点基金(No.20130031110013) (No.20130031110013)国家基础科学人才培养基金(No.J1103306)资助项目. (No.J1103306)

  • β-Oxopropylcarbamates constitute an important kind of organic compounds, owing to the extensive applications in agrochemicals, pharmaceuticals, organic synthesis, and protection of amino group. In this article, an efficient and atom-economical Cu(I) catalyzed three-component reaction of propargylic alcohols, secondary amines and CO2 has been developed under atmospheric pressure, affording various β-oxopropylcarbamates in high yields with high selectivity by controlling the concentration of O2. This protocol avoids the use of high pressure of CO2 and provides an extremely simple way to access the synthetically useful β-oxopropylcarbamates.
  • 加载中
    1. [1]

      [1] (a) He, L.-N. CO2 Chemistry, Science Press, Beijing, 2013 (in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)

    2. [2]

      (b) Otto, A.; Grube, T.; Schiebahna, S.; Stolten, D. Energy Environ. Sci. 2015, 8, 3283.

    3. [3]

      [2] Li, J. H.; Jia, L. Q.; Jiang, H. F. Chin. J. Org. Chem. 2000, 20, 293 (in Chinese). (李金恒, 贾兰齐, 江焕峰, 有机化学, 2000, 20, 293.)

    4. [4]

      [3] (a) Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

    5. [5]

      (b) Gao, J.; Miao, C.; Wang, J.; He, L.-N. Petrochemical Technol. 2010, 39, 465 (in Chinese). (高健, 苗成霞, 汪靖伦, 何良年, 石油化工, 2010, 39, 465.)

    6. [6]

      (c) Ji, D. F.; Lu, X. B.; He, R.; Zhan, X. L.; Yang, Y. R. Chem. J. Chin. Univ. 2001, 22, 1720 (in Chinese). (季东锋, 吕小兵, 何仁, 詹晓力, 阳永荣, 高等学校化学学报, 2001, 22, 1720.)

    7. [7]

      [4] For trepresentative reviews and reports on carbon capture and utilization, see: (a) Li, Y. N.; Ma, R.; He, L.-N.; Diao, Z. F. Catal. Sci. Technol. 2014, 4, 1498.

    8. [8]

      (b) Li, Y. N.; He, L.-N. Chin. Sci.Bull. 2015, 60, 1465 (in Chinese). (李雨浓, 何良年, 科学通报, 2015, 60, 1465.)

    9. [9]

      (c) Yang, Z. Z.; Zhao, Y. N.; He, L.-N. RSC Adv. 2011, 1, 545.

    10. [10]

      (d) Yang, Z. Z.; He, L.-N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.

    11. [11]

      (e) Liu, A. H.; Ma, R.; Song, C.; Yang, Z. Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y. N.; Yu, B.; Song, Q. W. Angew. Chem., Int. Ed. 2012, 51, 11306.

    12. [12]

      (f) Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L.-N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem. 2014, 7, 1484.

    13. [13]

      [5] (a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.

    14. [14]

      (b) He, M.; Sun, Y.; Han, B. Chin. Sci. Bull. 2015, 60, 1421 (in Chinese). (何鸣元, 孙予罕, 韩布兴, 科学通报, 2015, 60, 1421.)

    15. [15]

      [6] Wu, T. T.; Huang, J.; Arrington, N. D.; Dill, G. M. J. Agric. Food Chem. 1987, 35, 817.

    16. [16]

      [7] Vauthey, I.; Valot, F.; Gozzi, C.; Fache, F.; Lemaire, M. Tetrahedron Lett. 2000, 41, 6347.

    17. [17]

      [8] McGhee, W. D.; Pan, Y.; Riley, D. P. J. Chem. Soc., Chem. Commun. 1994, 6, 699.

    18. [18]

      [9] McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60, 2820.

    19. [19]

      [10] Salvatore, R. N.; Shin, S.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035.

    20. [20]

      [11] Yoshida, M.; Hara, N.; Okuyama, S. Chem. Commun. 2000, 151.

    21. [21]

      [12] Srivastava, R.; Srinivas, D.; Ratnasamy, P. Appl. Catal. A: Gen. 2005, 289, 128.

    22. [22]

      [13] Kong, D. L.; He, L. N.; Wang, J. Q. Synth. Commun. 2011, 41, 3298.

    23. [23]

      [14] Ion, A.; Van Doorslaer, C.; Parvulescu, V.; Jacobs, P.; De Vos, D. Green Chem. 2008, 10, 111.

    24. [24]

      [15] Chaturvedi, D.; Kumar, A.; Ray, S. Tetrahedron Lett. 2003, 44, 7637.

    25. [25]

      [16] Abla, M.; Choi, J. C.; Sakakura, T. Chem. Commun. 2001, 2238.

    26. [26]

      [17] Mahe, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1989, 54, 1518.

    27. [27]

      [18] Selva, M.; Tundo, P.; Perosa, A. Tetrahedron Lett. 2002, 43, 1217.

    28. [28]

      [19] Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Chem. Rev. 2003, 103, 3857.

    29. [29]

      [20] Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.

    30. [30]

      [21] Della, C. N.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133.

    31. [31]

      [22] Qi, C. R.; Jiang, H. F. Green Chem. 2007, 9. 1284.

    32. [32]

      [23] Sasaki, Y.; Dixncuf, P. H. J. Org. Chem. 1987, 52, 4389.

    33. [33]

      [24] Bruncau, C.; Dixncuf, P. H.; Tetrahedron Lett. 1987, 28, 2005.

    34. [34]

      [25] Qi, C. R.; Huang, L. B.; Jiang, H. F. Synthesis 2010, 1433.

    35. [35]

      [26] Kim, H. S.; Kim, J. W.; Kwon, S. C.; Shim, S. C.; Kim, T. J. J. Organomet. Chem. 1997, 545~546, 337.

    36. [36]

      [27] Kim, T. J.; Kwon, K. H.; Kwon, S. C.; Baeg, J. O.; Shim, S. C.; Lee, D. H. J. Organomet. Chem. 1990, 389, 205.

    37. [37]

      [28] Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Green Chem. 2014, 16, 1633.

    38. [38]

      [29] Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. ChemSusChem 2015, 8, 821.

    39. [39]

      [30] Jiang, H. F.; Zhao, J. W.; Wang, A. Z. Synthesis 2008, 763.

    40. [40]

      [31] Pinaka, A.; Vougioukalakis, G. C. Coord. Chem. Rev. 2015, 288, 69.

    41. [41]

      [32] (a) Li, Y. N.; Wang, J. N.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.

    42. [42]

      (b) Yang, Z.; Wang, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2015, 35, 207 (in Chinese). (杨振平, 王兵南, 许孝良, 王红, 李小年, 有机化学, 2015, 35, 207.)

    43. [43]

      [33] Hu, J.; Ma, J.; Zhu, Q.; Qian, Q.; Han, H.; Mei, Q.; Han, B. Green Chem. 2016, 18, 382.

    44. [44]

      [34] Gu, Y. L.; Shi, F.; Deng, Y. Q. J. Org. Chem. 2004, 69, 391.

  • 加载中
    1. [1]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    10. [10]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    15. [15]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

Metrics
  • PDF Downloads(0)
  • Abstract views(659)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return