Citation: Fu Ying, Zhao Xingling, Hou Bo. Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1184-1196. doi: 10.6023/cjoc201512017 shu

Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides

  • Corresponding author: Fu Ying, fu_yingmail@126.com
  • Received Date: 11 December 2015
    Revised Date: 11 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos.21262030,20962017

Figures(8)

  • Being an active class of electrophiles, the desulfitative cross-couplings of sulfonyl chlorides has emerged as a hot issue nowadays. Under suitable temperature and transitional metal catalysis, sulfonyl chlorides efficiently cross-coupled with a wide range of nucleophiles which were potential in several important organic synthesis. The transitional metal catalyzed desulfitative coupling reactions of sulfonyl chlorides are briefly reviewed and are compared with their corresponding sulfonylation reaction in order to find the key factors that determine desulfonation and further providing reliable proposal for future researches.
  • 加载中
    1. [1]

       

    2. [2]

      Herbrandson, H. F.; Kelly, W. S.; Versnel, V. J. Am. Chem. Soc. 1958, 80, 3301. 

    3. [3]

      Truce, W. E.; Vriesen, C. W. J. Am. Chem. Soc. 1953, 75, 5032. 

    4. [4]

      Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674. 

    5. [5]

    6. [6]

      Oestreich, M. The Mizoroki-Heck Reaction, John Wiley & Sons, Ltd., Münster, Germany, 2009.

    7. [7]

      Kasahara, A.; Izumi, T.; Kudou, N.; Azami, H.; Yamamato, S. Chem. Ind. 1988, 51. (b) Kasahara, A.; Izumi, T.; Miyamoto, K.; Sakai, T. Chem. Ind. 1989, 192.

    8. [8]

      Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Tetrahedron Lett. 1989, 30, 975. (b) Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1990, 2207.

    9. [9]

      Dubbaka, S. R.; Vogel, P. Chem. Eur. J. 2005, 11, 2633. 

    10. [10]

      Dubbaka, S. R.; Zhao, D.; Fei, Z.; Rao Volla, C. M.; Dyson, P. J.; Vogel, P. Synlett 2006, 3155.

    11. [11]

      Yuan, K.; Sang, R.; Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2015, 5, 2904.

    12. [12]

      Jafarpour, F.; Olia, M. B. A.; Hazrati, H. Adv. Synth. Catal. 2013, 355, 3407. 

    13. [13]

      Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D. Eur. J. Org. Chem. 2015, 459.

    14. [14]

      Kamigata, N.; Ozaki, J.; Kobayashi, M. Chem. Lett. 1985, 705. (b) Kamigata, N.; Ozaki, J.; Kobayashi, M. J. Org. Chem. 1985, 50, 5045. (c) Kameyama, M.; Shimezawa, H.; Satoh, T.; Kamigata, N. Bull. Chem. Soc. Jpn. 1988, 61, 1231.

    15. [15]

      Barata-Vallejo, S.; Postigo, A. Coord. Chem. Rev. 2013, 257, 3051. (b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598. (c) Barata-Vallejo, S.; Torviso, M. R.; Lantaño, B.; Bonesi, S. M.; Postigo, A. J. Fluorine Chem. 2014, 161, 134.

    16. [16]

      Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Sawada, H. J. Chem. Soc., Perkin Trans. 1 1991, 627.

    17. [17]

      Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962. (b) Orochov, A.; Asscher, M.; Vofsi, D. J. Chem. Soc. B 1969, 255.

    18. [18]

      Liu, L. K.; Chi, Y.; Jen, K.-Y. J. Org. Chem. 1980, 45, 406.

    19. [19]

      Xu, Y.-H.; Wang, M.; Lu, P.; Loh, T.-P. Tetrahedron 2013, 69, 4403.

    20. [20]

      Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. 

    21. [21]

      Labadie, S. S. J. Org. Chem. 1989, 54, 2496. 

    22. [22]

      Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292. 

    23. [23]

      Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1235.

    24. [24]

      Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.

    25. [25]

      Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. 

    26. [26]

      Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387. 

    27. [27]

      Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (b) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69. (c) Herrmann, W A.; Reisiner, C. P.; Spieger, M. J. Organomet. Chem. 1998, 557, 93. (d) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804. 

    28. [28]

      Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6, 2105.

    29. [29]

      Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060. (b) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. 

    30. [30]

      Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.

    31. [31]

      Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. 

    32. [32]

      Özdemir, I.; Gürbüz, N.; Seçkin, T.; Çetinkaya, B. Appl. Organomet. Chem. 2005, 19, 633. (b) Yan, C.; Zeng, X.; Zhang, W.; Luo, M. J. Organomet. Chem. 2006, 691, 3391. 

    33. [33]

      Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773. 

    34. [34]

      Zhao, Y.; Zhou, Y.; Ma, D.; Liu, J.; Zhang, T. Y.; Zhang, H. Org. Biomol. Chem. 2003, 1, 1643. (b) Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 1837. (c) Kim, J. H.; Jun, B. H.; Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 5827. (d) Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977. (e) Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305. 

    35. [35]

      Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305.

    36. [36]

      Zhang, S.; Zeng, X.; Wei, Z.; Zhao, D.; Kang, T.; Zhang, W.; Yan, M.; Luo, M. Synlett 2006, 1891.

    37. [37]

      Tamao, K.; Sumitani, K.; Kumuda, M. J. Am. Chem. Soc. 1972, 94, 4374. 

    38. [38]

      Gilman, H.; Fothergill, R. E. J. Am. Chem. Soc. 1929, 51, 3501. 

    39. [39]

      Sun, P.; Wang, L.; Zhang, Y. Tetrahedron Lett. 1997, 31, 5549.

    40. [40]

      Dubbaka, S. R.; Vogel, P. Tetrahedron Lett. 2006, 47, 3345. 

    41. [41]

      Fu, Y.; Zhu, W.; Zhao, X.; Hügel, H.; Wu, Z.; Su, Y.; Du, Z.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2014, 12, 4295. 

    42. [42]

      Rao Volla, C. M.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305. 

    43. [43]

      Volla, C. M. R.; Marković, D.; Dubbaka, S. R.; Vogel, P. Eur. J. Org. Chem. 2009, 6281.

    44. [44]

      Rao Volla, C. M.; Dubbaka, S. R.; Vogel, P. Tetrahedron 2009, 65, 504. 

    45. [45]

      Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954. (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874. 

    46. [46]

      Dubbaka, S. R.; Vogel, P. Adv. Synth. Catal. 2004, 346, 1793. 

    47. [47]

      Zeng, X.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.

    48. [48]

      Wang, L.; Zhu, H.; Che, J.; Yang, Y.; Zhu, G. Tetrahedron Lett. 2014, 55, 1011.

    49. [49]

    50. [50]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S. Synlett 2003, 1722.

    51. [51]

      Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 4107. 

    52. [52]

      Denmark, S. E.; Tymonko, S. A. J. Org. Chem. 2003, 68, 9151. 

    53. [53]

      Deng, G. S.; Sun, T. F. Chin. Chem. Lett. 2012, 23, 1115. 

    54. [54]

      Chatgilialoglu, C.; Mozziconacci, O.; Tamba, M.; Bobrowski, K.; Kciuk, G.; Bertrand, M. P.; Gastaldi, S.; Timokhin, V. I. J. Phys. Chem. A 2012, 116, 7623. 

    55. [55]

      Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638. 

    56. [56]

      Chen, C.; Su, J.; Tong, X. Chem. Eur. J. 2013, 19, 5014. 

    57. [57]

      Deng, G. B.; Wang, Z. Q.; Xia, J. D.; Qian, P. C.; Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 1535. 

    58. [58]

      Liu, Y.; Zhang, J.-L.; Zhou, M.-B.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 14412.

    59. [59]

      Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845. 

    60. [60]

      Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268. 

    61. [61]

      Huang, T.; Li, C.-T. Tetrahedron Lett. 2002, 43, 403. (b) Koike, T.; Mori, A. Synlett. 2003, 1850. (c) Wolf, C.; Lerebours, R. Org Lett. 2004, 6, 1147. (d) Wolf, C.; Lerebours, R. Synthesis 2005, 2287. (e) Alacid, E.; Nàjera, C. Adv. Synth. Catal. 2006, 348, 945.

    62. [62]

      Diederich, F.; de Meijere, A. Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, Weinheim, 2004.

    63. [63]

      Pan, C.; Liu, M.; Zhao, L.; Wu, H.; Ding, J.; Cheng, J. Cat. Commun. 2008, 9, 1685. (b) Ju, J.; Nam, H.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2006, 47, 8673. (c) Ranu, B. C.; Dey, R.; Chattopadhyay, K. Tetrahedron Lett. 2008, 49, 3430. (d) Napier, S.; Marcuccio, S. M.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2008, 49, 3939. (e) Riggleman, S.; DeShong, P. J. Org. Chem. 2003, 68, 8106.

    64. [64]

      Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486. 

    65. [65]

      Michael Seganish, W.; DeShong P. Org. Lett. 2004, 6, 4379.

    66. [66]

      Yoshida, J. I.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 19, 2161. (b) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.; Kumada, K. Organometallics 1982, 1, 542. (c) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 38, 439. (d) Matsuhashi, H.; Kuroboshi, M.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1994, 35, 6507. (e) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788. (f) Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 3556.

    67. [67]

      Cheng, K.; Hu, S.; Zhao, B.; Zhang, X.-M.; Qi, C. J. Org. Chem. 2013, 78, 5022. 

    68. [68]

      Miao, H.; Wang, F.; Zhou, S.; Zhang, G.; Li, Y. Org. Biomol. Chem. 2015, 13, 4647. 

    69. [69]

      Zhang, W.; Liu, F.; Li, K.; Zhao, B. Appl. Organomet. Chem. 2014, 28, 379. 

    70. [70]

      Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633. (b) Galli, C. Chem. Rev. 1988, 88, 765. (c) Rosenmund, K. W.; Struck, E. Chem. Ber. 1919, 52, 1749. (d) Von Braun, J.; Manz, G. Justus Liebigs Ann. Chem. 1931, 488, 111. (e) Connor, J. A.; Leeming, S. W.; Price, R. J. J. Chem. Soc., Perkin Trans. 1 1990, 1127. (f) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779.

    71. [71]

      Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev., 2011, 40, 5049. (b) Ushkov, A. V.; Grushin, V. V. J. Am. Chem. Soc., 2011, 133, 10999.

    72. [72]

      Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2010, 49, 8918.

    73. [73]

      Chen, J.; Sun, Y.; Liu, B.; Liu, D.; Cheng, J. Chem. Commun. 2012, 48, 449.

    74. [74]

      Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Chem. Lett. 1990, 19, 459.

    75. [75]

      Kashiwabara, T.; Tanaka, M. Tetrahedron Lett. 2005, 46, 7125.

    76. [76]

      Zhao, Q.; Chen, L.; Lang, H.; Wu, S.; Wang, L. Chin. J. Chem. 2015, 33, 535.

    77. [77]

      Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.

    78. [78]

      Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozakil, H. Tetrahedron Lett. 1985, 26, 5585.

    79. [79]

      Takai, K.; Kimura, K.; Kuroda, T.; Hiyama1, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281.

    80. [80]

      Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048. (b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (c) A. Fürstner, Chem. Rev. 1999, 99, 991.

    81. [81]

      Volla, C. M. R.; Marković, D.; Laclef, S.; Vogel, P. Chem. Eur. J. 2010, 16, 8984.

    82. [82]

      Seebach, D. Angew. Chem., Int. Ed. 1969, 8, 639. (b) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239.

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    4. [4]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    5. [5]

      Qun Wang Yang Li Songtao Lu Hongjun Kang Yang Hong Xiaohong Wu . Exploration for the Chemistry Innovative Talent Cultivation from an Interdisciplinary Perspective. University Chemistry, 2024, 39(8): 132-135. doi: 10.3866/PKU.DXHX202401052

    6. [6]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    7. [7]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    11. [11]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

Metrics
  • PDF Downloads(0)
  • Abstract views(9299)
  • HTML views(3590)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return