Citation: Wei Li, Chen Xuwen, Liu Yunyun, Wan Jieping. Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 954-961. doi: 10.6023/cjoc201512014 shu

Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium

  • Corresponding author: Wan Jieping, wanjieping@jxnu.edu.cn
  • Received Date: 7 December 2015
    Revised Date: 10 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China No. 21562025and the Natural Science Foundation of Jiangxi Province No. 20151BAB203008

Figures(11)

  • The biomass-derivable ethyl lactate has been attracting daily increasing attention as a green medium in organic synthesis. The unique advantages of nontoxicity, low cost, complete biodegradability, high boiling point, and excellent compatibility to water and most organic compounds of this solvent cater well to the property of a green reaction medium. In recent years, ethyl lactate (EL) has been successfully used as medium in different types of organic reactions, including Suzuki-Miyaura reaction, Glaser reaction as well as cascade synthesis of heterocyclic compounds with biological activities. Based on our own research interest in this issue, the advances in organic synthesis employing EL as a green medium are summarized.
  • 加载中
    1. [1]

      Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford Science Publications, New York, 1998.

    2. [2]

      Anastas, P. T.; Williamson, T. C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, 1999.

    3. [3]

      Anastas, P. T.; Zimmerrman, J. B. Environ. Sci. Technol. 2003, 37, 95.

    4. [4]

      Horvath, I. T. Acc. Chem. Res. 2002, 35, 685. 

    5. [5]

      Desimone, J. M. Science 2002, 297, 799. 

    6. [6]

      Sheldon, R. A. Green Chem. 2005, 7, 267. 

    7. [7]

      Nelson, W. M. Green Solvents for Chemistry: Perspectives and Practice, Oxford University Press, New York, 2003.

    8. [8]

      Kerton, F. M. Alternative Solvents for Green Chemistry, RSC Publishing, Cambridge, 2009.

    9. [9]

      Capello, C.; Fischer, U.; Hungerbuhler, K. Green Chem. 2007, 9, 927.

    10. [10]

      Dunn, P. J. Chem. Soc. Rev. 2012, 41, 1452. 

    11. [11]

      Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media, Wiley & Sons, New York, 1997.

    12. [12]

      Lindstroem, U. M. Chem. Rev. 2002, 102, 2751. 

    13. [13]

      Li, C. J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68. 

    14. [14]

      Li, C. J. Chem. Rev. 2005, 105, 3095. 

    15. [15]

      Welton, T. Chem. Rev. 1999, 99, 2071.

    16. [16]

      Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. 

    17. [17]

      Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003

    18. [18]

      Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123. 

    19. [19]

       

    20. [20]

      Jessop, P. G.; Ikariya, T.; Noyori, R. Acc. Chem. Res. 2002, 35, 746. 

    21. [21]

      Leitner, W. Acc. Chem. Res. 2002, 35, 746. 

    22. [22]

      Han, X.; Poliakoff, M. Chem. Soc. Rev. 2012, 41, 1428. 

    23. [23]

      DeSimone, J. M.; Tumas, W. Green Chemistry Using Liquid and Supercritical Carbon Dioxide, Oxford University Press, New York, 2003.

    24. [24]

       

    25. [25]

    26. [26]

       

    27. [27]

      Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang, Z.-H. RSC Adv. 2015, 5, 48675.

    28. [28]

      Jessop, P. G. Green Chem. 2011, 13, 1391. 

    29. [29]

      Yang, J.; Tan, J.-N.; Gu, Y. Green Chem. 2012, 14, 3304.

    30. [30]

      Wolfson, A.; Snezhko, A.; Meyouhas, T.; Tavor, D. Green Chem. Lett. Rev. 2012, 5, 7.

    31. [31]

      Gu, Y.; Jerôme, F. Green Chem. 2010, 12, 1127.

    32. [32]

      Cao, S.; Zhong, S.; Hu, C.; Wan, J.-P.; Wen, C. Chin. J. Chem. 2015, 33, 568.

    33. [33]

      Clary, J. J.; Feron, V. J.; van Velthuijsen, J. A. Regul. Toxicol. Pharmacol. 1998, 27, 88. 

    34. [34]

      Pereira, C. S. M.; Silva, V. M. T. M.; Rodrigues, A. E. Green Chem. 2011, 13, 2658. 

    35. [35]

      Bowner, C. T.; Hooftman, R. Chemosphere 1998, 37, 1317. 

    36. [36]

      Aparicio, S.; Alcalde, R. Green Chem. 2009, 11, 65.

    37. [37]

      Gu, Y.; Jerôme, F. Chem. Soc. Rev. 2013, 42, 9550. 

    38. [38]

      Yaws, C. L. Chemical Properties Handbook, McGraw-Hill, New York, 1999.

    39. [39]

      Sheldon, R. A. Green Chem. 2007, 9, 1273. 

    40. [40]

      Bermejo, D. V.; Ibáñez, E.; Stateva, R. P.; Fornari, T. J. Chem. Eng. Data 2013, 58, 301. 

    41. [41]

      Nikles, S. M.; Piao, M.; Lane, A. M.; Nikles, D. E. Green Chem. 2001, 3, 109. 

    42. [42]

      Wan, J.-P.; Wang, C.; Zhou, R.; Liu, Y. RSC Adv. 2012, 2, 8789.

    43. [43]

      Edwards, G. A.; Trafford, M. A.; Hamilton, A. E.; Buxton, A. M.; Bardeaux, M. C.; Chalker, J. M. J. Org. Chem. 2014, 79, 2094. 

    44. [44]

      Wan, J.-P.; Cao, S.; Jing, Y.-F. Appl. Organomet. Chem. 2014, 28, 631. 

    45. [45]

      Liu, Y.; Wang, H.; Wang, C.; Wan, J.-P.; Wen, C. RSC Adv. 2013, 3, 21369.

    46. [46]

      Bennett, J. S.; Charles, K. L.; Miner, M. R.; Heuberger, C. F.; Spina, E. J.; Bartels, M. F.; Foreman, T. Green Chem. 2009, 11, 166. 

    47. [47]

      Liu, Y.; Wen, W. Curr. Green Chem. 2015, 2, 399. 

    48. [48]

      Xu, Z.; Jiang, Y.; Zou, S.; Liu, Y. Phosphorus, Sulfur, Silicon Relat. Elem.2014, 189, 791.

    49. [49]

      Ghosh, P. P.; Paul, S.; Das, A. R. Tetrahedron Lett. 2013, 54, 138. 

    50. [50]

      Dandia, A.; Jain, A. K.; Laxkar, A. K. Tetrahedron Lett. 2013, 54, 3929. 

    51. [51]

      Yu, Z. Y.; Fang, Q. S.; Zhou, J.; Song, Z. B. Res. Chem. Intermed. 2016, 42, 2035. 

    52. [52]

      Procopio, A.; Costanzo, P.; Curini, M.; Nardi, M.; Oliverio, M.; Sindona, G. ACS Sustainable Chem. Eng. 2013, 1, 541.

    53. [53]

      Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. ChemCatChem 2015, 7, 1478.

    54. [54]

      Choudhary, G.; Peddinti, R. K. Tetrahedron Lett. 2014, 55, 5597. 

    55. [55]

      Mondal, D.; Chaudhary, J. P.; Sharma, M.; Prasad, K. RSC Adv. 2014, 4, 29834. 

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(0)
  • Abstract views(2853)
  • HTML views(542)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return