Citation: Zhang Xiaoxiang, Lü Chang, Li Ping, Fu Bo, Yao Weiwei. Progress of the Research on the Lewis/Brønsted Acid-Catalyzed Nucleophilic Substitution of Propargyl Alcohols[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1287-1298. doi: 10.6023/cjoc201512003 shu

Progress of the Research on the Lewis/Brønsted Acid-Catalyzed Nucleophilic Substitution of Propargyl Alcohols

  • Corresponding author: Zhang Xiaoxiang, s070038@hotmail.com Yao Weiwei, yww0715@hotmail.com
  • Received Date: 2 December 2015
    Revised Date: 30 December 2015

    Fund Project: and the Project Fund from the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe Young Natural Science Foundation of Jiangsu Province Nos.BK20130962,BK20130952Project supported by the Young National Natural Science Foundation of China No.21302096

Figures(21)

  • Lewis/Brønsted acid-catalyzed nucleophilic substitution of propargylic alcohols is very important in organic synthetic chemistry, which could be transformed into a variety of acyclic, carbocyclic and heterocyclic synthetic building blocks. A drawback of the traditional propargylation of Nicholas reaction is the generation of waste products resulting from displacement of the leaving group on treating with a catalyst and/or nucleophile. Therefore, the direct acid-catalyzed propargylation of propargylic alcohols is considered as a green method, which generated water as the only side product. In this review, the latest research progress on the Lewis and Brønsted acids catalyzed intermolecular and intramolecular propargylation of a variety of nucleophiles (NuH=C, N, O, S, I) with propargylic alcohols is presented. Finally, the problems and difficulties in research and application of propargylation of propargylic alcohols are discussed and then prospective is provided.
  • 加载中
    1. [1]

       

    2. [2]

    3. [3]

      Caffyn, A. J. M.; Nicholas, K. M. In Comprehensive Organometallic Chemistry II, Vol. 12, Eds.: Abel, E. W.; Stone, F. G. A.; Wilkinson, J., Pergamon, Oxford, 1995, Chapter 7.1. (b) Nicholas, K. M.; Pettit, R. J. Organomet. Chem. 1972, 44, 21. (c) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. (d) Green, J. R. Curr. Org. Chem. 2001, 5, 809. (e) Teobald, B. J. Tetrahedron 2002, 58, 4133. (f) Kuhn, O.; Rau, D.; Maayr, H. J. Am. Chem. Soc. 1998, 120, 900. (g) Müller, T. J. J. Eur. J. Org. Chem. 2001, 2021. (h) Nishibayashi, Y.; Uemura, S. Curr. Org. Chem. 2006, 10, 135.

    4. [4]

      Georgy, M.; Boucard, V.; Campagne, J. M. J. Am. Chem. Soc. 2005, 127, 14180. 

    5. [5]

      Zhan, Z.; Wang, W.; Yang, R.; Yu, J.; Li, J.; Liu, H. Chem. Commun. 2006, 3352.

    6. [6]

      Zhan, Z.; Liu, J.; Liu, H.; Cui, Y.; Yang, R.; Yang, W.; Li, J. J. Org. Chem. 2006, 71, 8298. 

    7. [7]

      Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Org. Lett. 2007, 9, 727.

    8. [8]

      Yoshimatsu, M.; Otani, T.; Matsuda, S.; Yamamoto, T.; Sawa, A. Org. Lett. 2008, 10, 4251.

    9. [9]

      Sanz, R.; Miguel, D.; Martinez, A.; Gohain, M.; Garcia-Garcia, P.; Fernandez-Rodriguez, A. M.; Alvarez, E.; Rodriguez, F. Eur. J. Org. Chem. 2010, 36, 7027.

    10. [10]

      Silveira, C. C.; Mendes, S. R.; Wolf, L.; Martins, G. M. Tetrahedron Lett. 2010, 51, 4560. 

    11. [11]

      Gohain, M.; Marais, C.; Bezuidenhoudt, B. C. B. Tetrahedron Lett. 2012, 53, 4704. 

    12. [12]

      Yadav, J. S.; Reddy, B. V. S.; Thrimurtulu, N.; Mallikarjuna Reddy, N.; Prasad, A. R. Tetrahedron Lett. 2008, 49, 2031. 

    13. [13]

      Wang, T.; Ma, R. D.; Liu, L.; Zhan, Z. P. Green Chem. 2010, 12, 1576. 

    14. [14]

      Huang, W.; Shen, Q.; Wang, J.; Zhou, X. J. Org. Chem. 2008, 73, 1586. 

    15. [15]

      Huang, W.; Zheng, P.; Zhang, Z.; Liu, R.; Chen, Z.; Zhou, X. J. Org. Chem. 2008, 73, 6845. 

    16. [16]

      Chatterjee, P. N.; Roy, S. J. Org. Chem. 2010, 75, 4413. 

    17. [17]

      Zhao, W.; Carreira, E. M. Org. Lett. 2003, 5, 4153. 

    18. [18]

      Yuan, F. Q.; Han, F. S. Adv. Synth. Catal. 2013, 355, 537.

    19. [19]

      Zhang, L.; Zhu, Y. X.; Yin, G.; Lu, P.; Wang, Y. J. Org. Chem. 2012, 77, 9510. 

    20. [20]

      Hao, L.; Pan, Y.; Wang, T.; Lin, M.; Chen, L.; Zhan, Z. Adv. Synth. Catal. 2010, 352, 3215. 

    21. [21]

      Song, J.-N.; Fang, Z.; Liu, Y.; Li, R.; Xu, L.; Barry, B.-D.; Liu, Q.; Bi, X.; Liao, P. Synlett 2011, 2551.

    22. [22]

      Li, Q.; Wang, Y.; Fang, Z.; Liao, P.; Barry, B.-D.; Che, G.; Bi, X. Synthesis 2013, 45, 609.

    23. [23]

      Liu, Y.; Barry, B.-D.; Yu, H.; Liu, J.; Liao, P.; Bi, X. Org. Lett. 2013, 15, 2608.

    24. [24]

      Ji, K.-G.; Shu, X.-Z.; Zhao, S.-C.; Zhu, H.-T.; Niu, Y.-N.; Liu, X. Y.; Liang, Y.-M. Org. Lett. 2009, 11, 3206. 

    25. [25]

      Haven, T.; Kubik, G.; Haubenreisser, S.; Niggemann, M. Angew. Chem., Int. Ed. 2013, 52, 4016. 

    26. [26]

      Shi, M.; Yao, L.-F. Chem.-Eur. J. 2008, 14, 8725.

    27. [27]

      Yao, L.-F.; Wei, Y.; Shi, M. J. Org. Chem. 2009, 74, 9466. 

    28. [28]

      Huang, G. B.; Wang, X.; Pan, Y. M.; Wang, H. S.; Yao, G. Y.; Zhang, Y. J. Org. Chem. 2013, 78, 2742. 

    29. [29]

      Yin, G.; Zhu, Y.; Lu, P.; Wang, Y. J. Org. Chem. 2011, 76, 8922. 

    30. [30]

      Yin, G.; Zhu, Y.; Wang, N.; Lu, P.; Wang, Y. Tetrahedron 2013, 69, 8353. (b) Similar reference, see: Shao, Y.; Zhu, K.; Qin, Z.; Li, E.; Li, Y. J. Org. Chem. 2013, 78, 5731.

    31. [31]

      Wang, S. Y.; Zhu, Y. X.; Wang, Y. G.; Lu, P. Org. Lett. 2009, 11, 2615.

    32. [32]

      Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 1024.

    33. [33]

      Zhu, Y. X.; Wen, S.; Yin, G. W.; Hong, D.; Lu, P.; Wang, Y. G. Org. Lett. 2011, 13, 3553. 

    34. [34]

      Yin, G. W.; Zhu, Y. X.; Zhang, L.; Lu, P.; Wang, Y. G. Org. Lett. 2011, 13, 940. 

    35. [35]

      Mothe, S. R.; Kothandaraman, P.; Lauw, S. J. L.; Chin, S. M. W.; Chan, P. W. H. Chem.-Eur. J. 2012, 18, 6133. 

    36. [36]

      Mothe, S. R.; Novianti, M. L.; Ayers, B. J.; Chan, P. W. H. Org. Lett. 2014, 16, 4110. 

    37. [37]

      Meyer, K. H.; Schuster, K. Ber. 1922, 55B, 819. (b) Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429. (c) Engel, D. A.; Dudley, G. B. Org. Biomol. Chem. 2009, 7, 4149.

    38. [38]

      Aponick, A.; Li, C.-Y.; Palmes, J. A. Org. Lett. 2009, 11, 121. 

    39. [39]

      Wang, L.; Xie, X.; Liu, Y. Org. Lett. 2012, 14, 5848.

    40. [40]

      Knight, D. W. WO 2006100479, 2006[Chem. Abstr. 2006, 145, 377330].

    41. [41]

      Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11, 4624. 

    42. [42]

      Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002.

    43. [43]

      Chen, S.; Wang, J. J. Org. Chem. 2007, 72, 4993. 

    44. [44]

      Ji, K. G.; Zhu, H. T.; Yang, F.; Shu, X. Z.; Zhao, S. C.; Liu, X. Y. Shaukat, A.; Liang, Y. M. Chem.-Eur. J. 2010, 16, 6151. 

    45. [45]

      Zhu, H. T.; Ji, K. G.; Yang, F.; Wang, L. J.; Zhao, S. C.; Ali, S.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2011, 13, 684. 

    46. [46]

      Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Tetrahedron Lett. 2011, 52, 936.

    47. [47]

      Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Chem. Commun. 2011, 47, 4541.

    48. [48]

      Choi, J.; Lee, G. H.; Kim, I. Synlett 2008, 1243.

  • 加载中
    1. [1]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    5. [5]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    14. [14]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    17. [17]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    18. [18]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(0)
  • Abstract views(4503)
  • HTML views(922)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return