Citation: Zhu Shuai, Xu Lubin, Wang Liang, Xiao Jian. Recent Advances in Asymmetric Synthesis of Optically Active Indole Derivatives from 3-Indolylmethanols[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1229-1240. doi: 10.6023/cjoc201510024 shu

Recent Advances in Asymmetric Synthesis of Optically Active Indole Derivatives from 3-Indolylmethanols

  • Corresponding author: Wang Liang, chemjianxiao@163.com Xiao Jian, chemjianxiao@163.com
  • Received Date: 21 October 2015
    Revised Date: 15 December 2015

    Fund Project: the Talents of High Level Scientific Research Foundation of Qingdao Agricultural University  Nos.6631112323,6631115015Project supported by the Open Project Program of Hubei Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Nos.OPP2015YB01,OPP2015ZD02

Figures(20)

  • The electrophilic intermediate, vinylogous imine or vinylogous iminium, can be in situ generated from 3-indolyl- methanols under acidic conditions. With the aid of chiral catalysts, miscellaneous nucleophiles can attack these electrophilic intermediates to afford enantioenriched and biologically important 3-substituted indole derivatives. The recent advances of preparation of optically active indole derivatives from 3-indolylmethanols via asymmetric alkylation, asymmetric reduction and asymmetric rearrangement are summarized.
  • 加载中
    1. [1]

    2. [2]

      Plimmer, J. R.; Gammon, D. W.; Ragsdale, N. N. Encyclopedia of Agrochemicals, Vol. 3, John Wiley & Sons, New York, 2003.

    3. [3]

      Ramirez, A.; Garcia-Rubio, S. Curr. Med. Chem. 2003, 10, 1891.

    4. [4]

      Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489. 

    5. [5]

      Goveky, S. P.; Overman, L. E. Tetrahedron 2007, 63, 8499. 

    6. [6]

      Lancianesi, S.; Palmoeri, A.; Petrini, M. Chem. Rev. 2014, 114, 7108. (b) Shiri, M.; Zolfigol, M. A. Chem. Rev. 2010, 110, 2250. (c) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449.

    7. [7]

      Ramesh, C.; Kavala, V.; Kuo, C. W.; Rama, R. B.; Yao, C. F. Eur. J. Org. Chem. 2010, 2010, 3796. 

    8. [8]

      Furstner, A.; Radkowski, K.; Peters, H. Angew. Chem., Int. Ed. 2005, 44, 2777. 

    9. [9]

      Usami, Y.; Yamaguchi, J.; Numata, A. Heterocycles 2004, 63, 1123.

    10. [10]

      Zhan, Z. P.; Yang, R. F.; Lang, K. Tetrahedron Lett. 2005, 46, 3859. 

    11. [11]

      Auria, M. Tetrahedron 1991, 47, 9225.

    12. [12]

      Rabindran, S. K.; Ross, D. D.; Doyle, L. A.; Yang, W. D.; Greenberger, L. M. Cancer Res.2000 ,60, 47.

    13. [13]

      Bergman, J.; Venemalm, L. Tetrahedron Lett. 1988, 29, 2993. 

    14. [14]

      Richou, R. M.; Lallouette, P.; Richou, H. C.R. Acad. Sci. 1967, 264, 2426.

    15. [15]

      Usami, Y.; Yamaguchi, J.; Numata, A. Heterocycles 2004, 63, 1123.

    16. [16]

      Conn, P., M.; Crowley, W. F., Jr. Annu. Rev. Med. 1994, 45, 391. 

    17. [17]

      Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed.2009, 48, 9608. (b) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449. (c) Zeng, M.; You, S.-L. Synlett 2010, 1289 

    18. [18]

      Lyttle, D. A.; Weisblat, D. I. J. Am. Chem. Soc. 1947, 69, 2118. (b) Semenov, B. B.; Granik, V. G. Pharm. Chem. J. 2004, 38, 287. (c) Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010, 8, 1259. (d) Wang, L.; Chen, Y.-Y.; Xiao, J. Asian J. Org. Chem. 2014, 3, 1036. 

    19. [19]

      Kataja, A. O.; Masson, G. Tetrahedron 2014, 70, 8783. 

    20. [20]

      Cozzi, P. G.; Benfatti, F.; Zoli, L. Angew. Chem., Int. Ed. 2009, 48, 1313. 

    21. [21]

      Zhang, Y.; Wang, S.-Y.; Xu, X.-P.; Jiang, R.; Ji, S.-J. Org. Biomol. Chem. 2013, 11, 1933.

    22. [22]

      Xiao, J.; Zhao, K.; Loh, T.-P. Chem. Asian J. 2011, 6, 2890.

    23. [23]

      Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. (b) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 2011, 647. (c) Cozzi, P.; Gualandi, A. Synlett 2013, 24, 281. (d) Kumar, R.; Eycken, E. V. V. d. Chem. Soc. Rev. 2013, 42, 1121. 

    24. [24]

      Xiao, J. Org. Lett. 2012, 14, 1716. (b) Xiao, J.; Zhao, K.; Loh, T.-P. Chem. Commun. 2012, 48, 3548.

    25. [25]

      Han, B.; Xiao, Y.-C.; Yao, Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2010, 49, 10189.

    26. [26]

      Xiao, Y.-C.; Zhou, Q.-Q.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2012, 14, 5940.

    27. [27]

      Xu, B.; Guo, Z. L.; Jin, W. Y.; Wang, Z. P.; Peng, Y. G.; Guo, Q. X. Angew. Chem., Int. Ed. 2012, 51, 1059. 

    28. [28]

      Zhang, C.; Zhang, L.-X.; Qiu, Y.; Xu, B.; Zong, Y.; Guo, Q.-X. RSC Adv. 2014, 4, 6916.

    29. [29]

      Tan, W.; Li, X.; Gong, Y.-X.; Ge, M.-D.; Shi, F. Chem. Commun. 2014, 50, 15901

    30. [30]

      Shi, F.; Zhang, H.-H.; Sun, X.-X.; Liang, J.; Fan, T.; Tu, S.-J. Chem. Eur. J. 2015, 21, 3465

    31. [31]

      Guo, Q.-X.; Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong, L.-Z. Org. Lett. 2009, 11, 4620.

    32. [32]

      Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong, L.-Z. Angew. Chem., Int. Ed. 2012, 51, 1046.

    33. [33]

      Tan, W.; Du, B.-X.; Li, X.; Zhu, X.; Shi, F.; Tu, S.-J. J. Org. Chem. 2014, 79, 4635

    34. [34]

      Song, J.; Guo, C.; Adele, A.; Yin, H.; Gong, L. Z. Chem. Eur. J. 2013, 19, 3319. 

    35. [35]

      Song, L.; Guo, Q.-X.; Li, X.-C.; Tian, J.; Peng, Y.-G. Angew. Chem., Int. Ed. 2012, 124, 1935.

    36. [36]

      Ren, C.-L.; Zhang, T.; Wang, X.-Y.; Wu, T.; Ma, J.; Xuan, Q.-Q.; Wei, F.; Huang, H.-Y.; Wang, D.; Liu, L. Org. Biomol. Chem. 2014, 12, 9881. 

    37. [37]

      Guo, Z.-L.; Xue, J.-H.; Fu, L.-N.; Zhang, S.-E.; Guo, Q.-X. Org. Lett. 2014, 16, 6472.

    38. [38]

      Xu, B.; Shi, L.-L.; Zhang, Y.-Z.; Wu, Z.-J.; Fu, L.-N.; Luo, C.-Q.; Zhang, L.-X.; Peng, Y.-G.; Guo, Q.-X. Chem. Sci. 2014, 5, 1988.

    39. [39]

      Ma, J.-A.; Dong, X.-D.; Li, S.; Guo, R.; Nie, J. Org. Lett. 2015, 17, 1389.

    40. [40]

      Shi, F.; Tu, S. J.; Zhu, R.Y. Chem. Eur. J. 2014, 20, 2597. 

    41. [41]

      Dai, W.; Lu, H.; Li, X.; Shi, F.; Tu, S.-J. Chem. Eur. J. 2014, 20, 11382.

    42. [42]

      Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593. 

    43. [43]

      Zhuo, M.-H.; Jiang, Y.-J.; Fan, Y.-S.; Gao, Y.; Liu, S.; Zhang, S. Org. Lett. 2014, 16, 1096.

    44. [44]

      Sun, X.-X.; Du, B.-X.; Zhang, H.-H.; Ji, L.; Shi, F. ChemCatChem 2015, 7, 1211.

    45. [45]

      Sun, F.-L., Gu. Q.; Zeng, M.; You, S.-L. Chem. Eur. J. 2009, 15, 8709.

    46. [46]

      Wang, S.-G.; Han, L.; Zeng, M.; Sun, F.-L.; Zhang, W.; You, S.-L. Org. Biomol. Chem. 2012, 10, 3202.

    47. [47]

      Wang, D.-S.; Tang, J.; Zhou, Y.-G.; Chen, M.-W.; Yu, C.-B.; Duan, Y.; Jiang, G.-F. Chem. Sci. 2011, 2, 803.

    48. [48]

      Duan, Y.; Chen, M.-W.; Ye, Z.-S.; Wang, D.-S.; Chen, Q.-A.; Zhou, Y.-G. Chem. Eur. J. 2011, 17, 7193.

    49. [49]

      Liang, T.; Zhang, Z.; Antilla, J. C. Angew. Chem., Int. Ed. 2010, 49, 9734. 

    50. [50]

      Non-asymmetric alkylation and arylation of 3-indolylmethanol were implemented in our group under catalyst-free condition with water and trifluoroethanol as reaction media: (a) Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y.; Xiao, J. Adv. Synth. Catal. 2015, 357, 4023. (b) Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y. Green Chem. 2016, 18, 1032. 

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    20. [20]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

Metrics
  • PDF Downloads(0)
  • Abstract views(2160)
  • HTML views(886)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return