Citation: Li Zhipeng, Chen Feiran, Wang Dongyang, Huang Xingtian, Li Yiqun. Agarose Hydrogel Entrapped Trisodium Citrate Catalyzed Multicomponent Reactions for the Synthesis of Benzopyran and Pyranopyrazole Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 838-843. doi: 10.6023/cjoc201510010 shu

Agarose Hydrogel Entrapped Trisodium Citrate Catalyzed Multicomponent Reactions for the Synthesis of Benzopyran and Pyranopyrazole Derivatives

  • Corresponding author: Li Yiqun, 
  • Received Date: 11 October 2015
    Available Online: 25 November 2015

    Fund Project: 国家自然科学基金(Nos.21372099,21072077) (Nos.21372099,21072077)广东省自然科学基金(No.10151063201000051,8151063201000016)资助项目. (No.10151063201000051,8151063201000016)

  • An efficient method for the synthesis of benzopyran derivatives and pyrano[2,3-c]pyrazole derivatives via multicomponent reaction in the presence of agarose hydrogel entrapped trisodium citrate (gel-citrate) as catalyst is developed. The protocol presented here has the merits of easy preparation and handling of catalyst, environmentally benign, simple operation and convenient workup, and excellent yields. Moreover, the catalyst could be recovered and reused at least 6 cycles without apparently losing its activities.
  • 加载中
    1. [1]

      [1] Strecker, A. Ann. 1850, 75, 27.

    2. [2]

      [2] Hantzsch, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1637.

    3. [3]

      [3] Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.

    4. [4]

      [4] Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1, 8.

    5. [5]

      [5] (a) Ruijter, E.; Scheffelaar, R.; Orru, R. V. Angew. Chem., Int. Ed. Engl. 2011, 50, 6234.

    6. [6]

      (b) Wang, J.; Shen, Q.; Li, P.; Peng, Y.; Song, G. Org. Biomol. Chem. 2014, 12, 5597.

    7. [7]

      (c) Banfi, L.; Basso, A.; Moni, L.; Riva, R. Eur. J. Org. Chem. 2014, 2014, 2005.

    8. [8]

      (d) Bharti, R.; Parvin, T. RSC Adv. 2015, 5, 66833.

    9. [9]

      (e) Nikbakht, A.; Ramezanpour, S.; Balalaie, S.; Rominger, F. Tetrahedron 2015, 71, 6790.

    10. [10]

      (f) Liu, B.; Wei, E.; Lin, S.; Zhao, B.; Liang, F. Chem. Commun. 2014, 50, 6995.

    11. [11]

      [6] (a) Wang, Q. F.; Song, X. K.; Yan, C. G. Prog. Chem. 2009, 21, 997 (in Chinese). (王琦芳, 宋肖锴, 颜朝国, 化学进展, 2009, 21, 997.)

    12. [12]

      (b) Guo, H. Y.; Tian, J. J. Chin. J. Org. Chem. 2011, 31, 1752 (in Chinese). (郭红云, 田金金, 有机化学, 2011, 31, 1752.)

    13. [13]

      (c) Han, Y.; Sun, J.; Sun, Y.; Gao, H.; Yan, C. G. Chin. J. Org. Chem. 2012, 32, 1577 (in Chinese). (韩莹, 孙晶, 孙岩, 高红, 颜朝国, 有机化学, 2012, 32, 1577.)

    14. [14]

      (d) Xiao, L. W.; Peng, X. X.; Zhou, Q. X.; Kou, W.; Shi, Y. R. Chin. J. Org. Chem. 2015, 35, 1204 (in Chinese). (肖立伟, 彭晓霞, 周秋香, 寇伟, 时亚茹, 有机化学, 2015, 35, 1204.)

    15. [15]

      (e) Tian, J. J.; Guo, H. Y. Chin. J. Org. Chem. 2011, 31, 2009 (in Chinese). (田金金, 郭红云, 有机化学, 2011, 31, 2009.)

    16. [16]

      [7] (a) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517.

    17. [17]

      (b) Zhang, G.; Zhang, Y. H.; Yan, J. X.; Chen, R.; Wang, S. L.; Ma, Y. X.; Wang, R. J. Org. Chem. 2012, 77, 878.

    18. [18]

      (c) Kuo, S. C.; Huang, L. J.; Nakamura, H. J. Med. Chem. 1984, 27, 539.

    19. [19]

      (d) Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. P. Natl. Acad. Sci. 2000, 97, 7124.

    20. [20]

      (e) Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Arch. Pharm. 2006, 339, 456.

    21. [21]

      [8] Litvinov, Y. M.; Shestopalov, A. A.; Rodinovskaya, L. A.; Shestopalov, A. M. J. Comb. Chem. 2009, 11, 914.

    22. [22]

      [9] Vasuki, G.; Kumaravel, K. Tetrahedron Lett. 2008, 49, 5636.

    23. [23]

      [10] Ilovaisky, A. I.; Medvedev, M. G.; Merkulova, V. M.; Elinson, M. N.; Nikishin, G. I. J. Heterocycl. Chem. 2014, 51, 523.

    24. [24]

      [11] Zheng, J.; Li, Y. Mendeleev Commun. 2011, 21, 280.

    25. [25]

      [12] Zhao, L. Q.; Li, Y. Q.; Chen, L.; Zhou, B. Chin. J. Org. Chem. 2010, 30, 124 (in Chinese). (赵丽琴, 李毅群, 陈路, 周波, 有机化学, 2010, 30, 124.)

    26. [26]

      [13] Guo, R. Y.; An, Z. M.; Mo, L. P.; Yang, S. T.; Liu, H. X.; Wang, S. X.; Zhang, Z. H. Tetrahedron 2013, 69, 9931.

    27. [27]

      [14] Elnagdi, N. M. H.; Al-Hokbany, N. S. Molecules 2012, 17, 4300.

    28. [28]

      [15] Bihani, M.; Bora, P. P.; Bez, G.; Askari, H. ACS Sustainable Chem. Eng. 2013, 1, 440.

    29. [29]

      [16] Mecadon, H.; Rohman, M. R.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 2523.

    30. [30]

      [17] Wang, X. S.; Shi, D. Q.; Tu, S. J.; Yao, C. S. Synth. Commun. 2003, 33, 119.

    31. [31]

      [18] Tu, S. J.; Gao, Y.; Guo, C.; Shi, D. Q.; Lu, Z. S. Synth. Commun. 2002, 32, 2137.

    32. [32]

      [19] (a) Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217.

    33. [33]

      (b) Buchmeiser, M. R. Chem. Rev. 2008, 109, 303.

    34. [34]

      [20] (a) De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem. Rev. 2002, 102, 3615.

    35. [35]

      (b) Thomas, J. M.; Raja, R. Acc. Chem. Res. 2008, 41, 708.

    36. [36]

      [21] Oded, K.; Musa, S.; Gelman, D.; Blum, J. Catal. Commun. 2012, 20, 68.

    37. [37]

      [22] Abu-Reziq, R.; Shenglof, M.; Penn, L.; Cohen, T.; Blum, J. J. Mol. Catal. A: Chem. 2008, 290, 30.

    38. [38]

      [23] Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M. ChemCatChem 2015, 7, 254.

    39. [39]

      [24] Diz, P.; Pernas, P.; El Maatougui, A.; Tubio, C. R.; Azuaje, J.; Sotelo, E.; Guitián, F.; Gil, A.; Coelho, A. Appl. Catal. A: Gen. 2015, 502, 86.

    40. [40]

      [25] Bandgar, B. P.; Uppalla, L. S. Synth. Commun. 2000, 30, 2071.

    41. [41]

      [26] Chaphekar, S. S.; Samant, S. D. Appl. Catal. A: Gen. 2003, 242, 11.

    42. [42]

      [27] Shinde, S.; Rashinkar, G.; Kumbhar, A.; Kamble, S.; Salunkhe, R. Helv. Chim. Acta 2011, 94, 1943.

    43. [43]

      [28] Shinde, S.; Rashinkar, G.; Salunkhe, R. J. Mol. Liq. 2013, 178, 122.

    44. [44]

      [29] Jadhav, S.; Kumbhar, A.; Kamble, S.; More, P.; Salunkhe, R. C. R. Chim. 2013, 16, 957.

    45. [45]

      [30] Natekar, R.; Samant, S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1996, 35, 1347.

    46. [46]

      [31] (a) Dippy, J. F. J.; Evans, R. M. J. Org. Chem. 1950, 15, 451.

    47. [47]

      (b) Li, Y. L.; Zhou, J. F.; Gong, G. X.; Zhu, F. X. Chin. J. Org. Chem. 2009, 29, 441 (in Chinese). (李艳伦, 周建峰, 贡桂霞, 朱凤霞, 有机化学, 2009, 29, 441.)

    48. [48]

      (c) Bian, Q. L.; Xu, S.; Duan, W. L. Chin. J. Org. Chem. 2015, 35, 234 (in Chinese). (边庆龙, 许胜, 段伟良, 有机化学, 2015, 35, 234.)

    49. [49]

      [32] Nasseri, M. A.; Sadeghzadeh, S. M. Monatsh. Chem. 2013, 144, 1551.

    50. [50]

      [33] Elinson, M. N.; Dorofeev, A. S.; Feducovich, S. K.; Gorbunov, S. V.; Nasybullin, R. F.; Miloserdov, F. M.; Nikishin, G. I. Eur. J. Org. Chem. 2006, 4335.

    51. [51]

      [34] Peng, Y.; Song, G.; Dou, R. Green Chem. 2006, 8, 573.

    52. [52]

      [35] Sharanina, L. G.; Promonenkov, V. K.; Marshtupa, V. P.; Pashchenko, A. V.; Puzanova, V. V.; Sharanin, Y. A.; Klyuev, N. A.; Gusev, L. F.; Gnatusina, A. P. Chem. Heterocycl. Compd. 1982, 18, 607.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    3. [3]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(1056)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return