Citation: Xiao Jianjun, Qiu Zumin, He Weijuan, Du Chengcheng, Zhou Wei. Progress in Platinum Catalysts Supported by Inorganic Carriers for Hydrosilylation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(5): 987-999. doi: 10.6023/cjoc201509028 shu

Progress in Platinum Catalysts Supported by Inorganic Carriers for Hydrosilylation

  • Corresponding author: Qiu Zumin, mzqiu@ncu.edu.cn
  • Received Date: 21 September 2015
    Revised Date: 20 December 2015

    Fund Project: and the Natural Science Foundation of Jiangxi Province No. 20122BAB203021Project supported by the National Natural Science Foundation of China No. 21276121

Figures(16)

  • Hydrosilylation catalyzed by transition metals or their complexes is one of the most important ways to synthesize organosilicones, and platinum catalysts are widely used. Inorganic carriers supported platinum catalysts not only can avoid the disadvantages of homogeneous catalysts, such as corroding reactor, pain platinum recovery and low reaction selectivity, but also can be available for sequential reactions due to the good mechanical strength and stability in reaction medium. A lot of literatures relating to platinum catalysts supported by inorganic carriers for hydrosilylation have been published. The platinum compounds have been supported by carbon carriers, silica, metallic oxide, molecular sieve or other inorganic carriers via direct load method or complexation between platinum and vinyl, phosphino, amino, arsino or mercapto functional group modified on the surface of the carriers. The research progresses in preparation, structure and properties of inorganic carriers supported platinum catalysts for hydrosilylation during recent 15 years are summarized with the description of their development trend.
  • 加载中
    1. [1]

      Hiyama, T.; Kusumoto, T. In Comprehensive Organic Synthesis, Vol. 8, Eds.: Trost, B. M.; Fleming, I., Pergamon, New York, 1991, pp. 763~792.

    2. [2]

      Marciniec, B. Comprehensive Handbook on Hydrosilylation, Pergamon, New York, 1992, pp. 3~7.

    3. [3]

    4. [4]

    5. [5]

      Sommer, L. H.; Pietrusza, E. W.; Whitmore, F. C. J. Am. Chem. Soc. 1947, 69, 188.

    6. [6]

      Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61. 

    7. [7]

      Brunner, H.; Eder, R.; Hammer, B.; Klement, U. J. Organomet. Chem. 1990, 394, 555. 

    8. [8]

      Zhou, S.; Fleischer, S.; Junge, K.; Das, S.; Addis, D.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 8121. 

    9. [9]

      [9] Enthaler, S. Chem. Cat. Chem. 2011, 3, 666.

    10. [10]

    11. [11]

      Ojima, I. In Organic Silicon Compounds, Vol. 1~2, Eds.: Patai, S.; Rappoport, Z., John Wiley and Sons, New York, 1989, pp. 1479~1526.

    12. [12]

    13. [13]

    14. [14]

      Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957, 79, 974. 

    15. [15]

    16. [16]

      Karstedt, B. US 3775452, 1973 [Chem. Abstr. 1969, 71, 91641].

    17. [17]

      Dioumaev, V. K.; Bullock, R. M. Nature 2000, 424, 530. 

    18. [18]

      Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. Science 2002, 298, 204.

    19. [19]

      Pagliaro, M.; Ciriminna, R.; Pandarus, V.; Béland, F. Eur. J. Org. Chem. 2013, 2013, 6227.

    20. [20]

      Jiménez, R.; Martínez-Rosales, J. M.; Cervantes, J. Can. J. Chem. 2003, 81, 1370.

    21. [21]

      Caporusso, A. M.; Aronica, L. A.; Schiavi, E.; Martra, G.; Vitulli, G.; Salvadori, P. J. Organomet. Chem. 2005, 690, 1063. 

    22. [22]

      Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.; Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M. Organometallics 2008, 27, 6495.

    23. [23]

      Shih, H.; Williams, D.; Mack, N. H.; Wang, H. Macromolecules 2008, 42, 14.

    24. [24]

      Bai, Y.; Peng, J. J.; Hu, Y. Q.; Li, J. Y.; Lai, G. Q. J. Fluorine Chem. 2011, 132, 123. 

    25. [25]

      Bandari, R.; Buchmeiser, M. R. Catal. Sci. Technol. 2012, 2, 220. 

    26. [26]

      Yermakov, Y. I.; Kuznetsov, B. N.; Zakharov, V. A. Catalysis by Supported Complexes, Vol. 8, Elsevier, Amsterdam, 1981, pp. 1~58.

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

      Chauhan, M.; Hauck, B. J.; Keller, L. P.; Boudjouk, P. J. Organomet. Chem. 2002, 645, 1. 

    32. [32]

      Marciniec, B.; Maciejewski, H.; Duczmal, W.; Fiedorow, R.; Kityński, D. Appl. Organomet. Chem. 2003, 17, 127. 

    33. [33]

    34. [34]

    35. [35]

    36. [36]

      Dongil, A. B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. J. Catal. 2011, 282, 299. 

    37. [37]

      Dongil, A. B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Catal. Commun. 2012, 26, 149.

    38. [38]

      Hu, Z.; Liu, C. B. J. Polym. Res. 2013, 20, 1.

    39. [39]

      Zhao, Y. F.; Zhang, H. Y.; Huang, C. L.; Chen, S.; Yu, B.; Xu, J. L.; Liu, Z. M. Sci. China Chem. 2013, 56, 203.

    40. [40]

      Mungse, H. P.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. P. J. Mater. Chem. 2012, 22, 5427. 

    41. [41]

      Li, Z. F.; Wu, S. J.; Ding, H.; Zheng, D. F.; Hu, J.; Wang, X.; Huo, Q.; Guan, J.; Kan, Q. New J. Chem. 2013, 37, 1561.

    42. [42]

      Rao, F. Y.; Deng, S. J.; Chen, C.; Zhang, N. Catal. Commun. 2014, 46, 1.

    43. [43]

    44. [44]

    45. [45]

      Funck, A.; Kaminsky, W. Compos. Sci. Technol. 2007, 67, 906.

    46. [46]

      Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem., Int. Ed. 2013, 52, 371. 

    47. [47]

    48. [48]

    49. [49]

    50. [50]

      Zarei, A. Tetrahedron Lett. 2012, 53, 5176. 

    51. [51]

      Chandrachood, P.; Gadkari, T.; Deshpande, N.; Kashalkar, R. J. Iran. Chem. Soc. 2012, 9, 47-51. 

    52. [52]

      Zupp, L. R.; Campanella, V. L.; Rudzinski, D. M.; Beland, F.; Priefer, R. Tetrahedron Lett. 2012, 53, 5343. 

    53. [53]

      Mahmoodi, N. O.; Heirati, S. Z. D.; Ekhlasi-Kazaj, K. J. Iran. Chem. Soc. 2012, 9, 521. 

    54. [54]

      Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. ACS Catal. 2012, 2, 2537. 

    55. [55]

      Okamoto, M.; Kiya, H.; Yamashita, H.; Suzuki, E. Chem. Commun. 2002, 1634.

    56. [56]

      Okamoto, M.; Kiya, H.; Matsumura, A.; Suzuki, E. Catal. Lett. 2008, 123, 72.

    57. [57]

      Afanasev, D. S.; Yakovina, O. A.; Kuznetsova, N. I.; Lisitsyn, A. S. Catal. Commun. 2012, 22, 43. 

    58. [58]

      Franco, C. A.; Montoya, T.; Nassar, N. N.; Pereira-Almao, P.; Cortés, F. B. Energy Fuels 2013, 27, 7336. 

    59. [59]

      Li, J.; Yang, C. H.; Zhang, L.; Ma, T. L. J. Organomet. Chem. 2011, 696, 1845. 

    60. [60]

      Liu, G.; Huang, B.; Cai, M. Z. React. Funct. Polym. 2007, 67, 294. 

    61. [61]

    62. [62]

      Huang, S.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2011, 102, 71. 

    63. [63]

      Djeddi, A.; Fechete, I.; Garin, F. Top. Catal. 2012, 55, 700.

    64. [64]

      Su, R.; Tiruvalam, R.; Logsdail, A. J.; He, Q.; Downing, C. A.; Jensen, M. T.; Dimitratos, N.; Kesavan, L.; Wells, P. P.; Bechstein, R. ACS Nano 2014, 8, 3490. 

    65. [65]

      Alonso, F.; Buitrago, R.; Moglie, Y.; Ruiz-Martínez, J.;Sepúlveda-Escribano, A.; Yus, M. J. Organomet. Chem. 2011, 696, 368. 

    66. [66]

      Alonso, F.; Buitrago, R.; Moglie, Y.; Sepúlveda-Escribano, A.; Yus, M. Organometallics 2012, 31, 2336.

    67. [67]

      Selvamani, T.; Yagyu, T.; Kawasaki, S.; Mukhopadhyay, I. Catal. Commun. 2010, 11, 537.

    68. [68]

      Zhang, Y. F.; Ma, M. Z.; Zhang, X. Y.; Wang, B. A.; Liu, R. P. J. Alloys Compd. 2014, 590, 373. 

    69. [69]

      Kaluža, L.; Gulková, D.; Vít, Z.; Zdražil, M. Appl. Catal. B-Environ. 2015, 162, 430. 

    70. [70]

    71. [71]

      Jiménez, R.; López, J. M.; Cervantes, J. Can. J. Chem. 2000, 78, 1491.

    72. [72]

      Ramírez-Oliva, E.; Hernández, A.; Martínez-Rosales, J. M. ARKIVOC 2006, 126.

    73. [73]

      Xu, H. J.; Wan, X.; Shen, Y. Y.; Xu, S.; Feng, Y. S. Org. Lett. 2012, 14, 1210. 

    74. [74]

      Xu, L.; Wang, J. Environ. Sci. Technol. 2012, 46, 10145. 

    75. [75]

      Baykal, A.; Karaoglu, E.; Sözeri, H.; Uysal, E.; Toprak, M. S. J. Supercond. Novel Magn. 2013, 26, 165. 

    76. [76]

      Cano, R.; Yus, M.; Ramón, D. J. ACS Catal. 2012, 2, 1070. 

    77. [77]

      Huang, Z.; Shi, Y.; Wen, R.; Guo, Y. H.; Su, J. F.; Matsuura, T. Sep. Purif. Technol. 2006, 51, 126. 

    78. [78]

      Chen, F.; Li, Y.; Cai, W. D.; Zhang, J. L. J. Hazard. Mater. 2010, 177, 743. 

    79. [79]

    80. [80]

    81. [81]

      Mastalir, A.; Rác, B.; Király, Z.; Molnár, Á. J. Mol. Catal. A: Chem. 2007, 264, 170.

    82. [82]

      Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Chem. Eng. J. 2012, 207, 103.

    83. [83]

      Wang, N.; Yu, X. P.; Wang, Y.; Chu, W.; Liu, M. Catal. Today. 2013, 212, 98. 

    84. [84]

      Lovell, E.; Jiang, Y.; Scott, J.; Wang, F.; Suhardja, Y.; Chen, M.; Huang, J.; Amal, R. Appl. Catal. A-Gen. 2014, 473, 51. 

    85. [85]

      Guan, Q. X.; Wan, F. F.; Han, F.; Liu, Z. H.; Li, W. Catal. Today 2016, 259, 467. 

    86. [86]

      Wu, H. Y.; Zhang, X. L.; Chen, X.; Chen, Y.; Zheng, X. C. J. Solid State Chem. 2014, 211, 51. 

    87. [87]

    88. [88]

      Zhang, H. A.; Liu, J. Q.; Cheng, S. J.; Cai, M. Z. J. Chem. Res. 2012, 36, 241. 

    89. [89]

      Hu, R. H.; Zha, L. F.; Cai, M. Z. Catal. Commun. 2010, 11, 563. 

    90. [90]

      Zha, L. F.; Hao, W. Y.; Cai, M. Z. J. Chem. Res. 2010, 34, 648. 

    91. [91]

      Ye, Z.; Shi, H.; Shen, H. Phosphorus Sulfur. 2015, 190, 1621. 

    92. [92]

    93. [93]

    94. [94]

    95. [95]

    96. [96]

    97. [97]

      Miao, Q. J.; Fang, Z. P.; Cai, G. P. Catal. Commun. 2003, 4, 637. 

    98. [98]

      Fang, Z. P.; Yang, H. T.; Miao, Q. J.; Cai, G. P. Chin. Chem. Lett. 2006, 17, 1155.

    99. [99]

      Yang, H. T.; Fang, Z. P.; Fu, X. Y.; Tong, L. F. Chin. J. Catal. 2007, 28, 947. 

    100. [100]

      Yang, H. T.; Fang, Z. P.; Fu, X. Y.; Tong, L. F. Catal. Commun. 2008, 9, 1092. 

    101. [101]

    102. [102]

    103. [103]

    104. [104]

    105. [105]

      Zhang, D. H.; Huo, W. J.; Wang, J.; Li, T. C.; Cheng, X. J.; Li, J. L.; Zhang, A. Q. J. Appl. Polym. Sci. 2012, 126, 1580. 

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    16. [16]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

Metrics
  • PDF Downloads(0)
  • Abstract views(2075)
  • HTML views(406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return