Citation: Chen Dong, Tuo Qiaoyan, Liu Wenxin, Yin Qin, Tong Xuguang Zhao, Haiying Li, Baoguo Bian, . Synthesis and Properties of Porphyrin Containing Long Chain Alkylferrocene[J]. Chinese Journal of Organic Chemistry, ;2016, 36(2): 346-351. doi: 10.6023/cjoc201509007 shu

Synthesis and Properties of Porphyrin Containing Long Chain Alkylferrocene

  • Corresponding author: Haiying Li, 
  • Received Date: 6 September 2015
    Available Online: 14 October 2015

    Fund Project: 国家自然科学基金(No. 21562032) (No. 21562032)内蒙古自治区高等学校科学研究(No. NJZZ001) (No. NJZZ001)内蒙古自治区自然科学基金(Nos. 2013MS0207, 2014JQ02)资助项目. (Nos. 2013MS0207, 2014JQ02)

  • Two series of porphyrins and their Zn (II) complexes modified with long chain alkylferrocene were designed. One was close conjugate connection of porphyrin and ferrocene containing long chain alkyl group by an amide linkage in meso site of porphyrin (porphyrin 5 and its Zn (II) complex 6), the other was placed ferrocene on the skirt of meso-tetraphenylporphyrin with long chain alkoxy group (porphyrin 7 and its Zn(II) complex 8). The spectroscopic and electrochemistry properties of two series of compounds were investigated. The absorption bands of free porphyrins were almost the same, but those of their Zn(II) complexes were red-shifted by 7 nm. Porphyrins 5 and 6 with an amide linkage exhibited strong fluorescence quenching with a low quantum yield compared with those containing a long chain alkoxy group linkage (7 and 8). Compared with the free porphyrins, the negative potential shifts of the Zn(II) complexes were observed in cyclic voltammetry experiments. In addition, the first oxidation potentials of porphyrin in 7 and 8 were slight negative shifts relative to 5 and 6, but the first oxidation potentials of ferrocene in 7 and 8 shifted about 182~194 mV.
  • 加载中
    1. [1]

      [1] Fungo, F.; Milanesio, M. E.; Durantini, E. N.; Otero, L.; Dittrich, T. J. Mater. Chem. 2007, 17, 2107.

    2. [2]

      [2] Vecchi, A.; Erickson, N. R.; Sabin, J. R.; Floris, B.; Conte, V.; Venanzi, M.; Galloni, P.; Nemykin, V. N. Chem. Eur. J. 2015, 21, 269.

    3. [3]

      [3] Fukuzumi, S.; Kojima, T. J. Mater. Chem. 2008, 18, 1427.

    4. [4]

      [4] Villegas, C.; Wolf, M.; Joly, D.; Delgado, J. L.; Guldi, D. M.; Martín, N. Org. Lett. 2015, 17(20), 5056.

    5. [5]

      [5] Rousseaux, S. A. L.; Gong, J. Q.; Haver, R.; Odell, B.; Claridge, T. D. W.; Herz, L. M.; Anderson, H. L. J. Am. Chem. Soc. 2015, 137, 12713.

    6. [6]

      [6] Tagliatesta, P.; Pizzoferrato, R. J. Organomet. Chem. 2015, 787, 27.

    7. [7]

      [7] Zhao, H.; Gu, X.; Yan, X.; Liu, Z.; Chen, Q.; Bian, Z. Chin. J. Org. Chem. 2014, 34, 371 (in Chinese). (赵海英, 顾雪松, 鄢小卿, 刘智波, 陈强, 边占喜, 有机化学, 2014, 34, 371.)

    8. [8]

      [8] Bucher, C.; Devillers, C. H.; Moutet, J.-C.; Saint-Aman, E. Coord. Chem. Rev. 2009, 253, 21.

    9. [9]

      [9] Gokulnath, S.; Achary, B. S.; Kumar C. K.; Trivedi, R.; Sridhar, B.; Giribabu, L. Photochem. Photobiol. 2015, 91, 33.

    10. [10]

      [10] Wijesinghe, C. A.; El-Khouly, M. E.; Fukuzumi, S.; D'Souza, F. Chem. Eur. J. 2013, 19, 9629.

    11. [11]

      [11] Lvova, L.; Galloni, P.; Floris, B.; Lundström, I.; Paolesse, R.; Natale, C. D. Sensors 2013, 13, 5841.

    12. [12]

      [12] Sirbu, D.; Turta, C.; Benniston, A. C.; Abou-Chahine, F.; Lemmetyinen, H.; Tkachenko, N. V.; Wood, C.; Gibson, E. RSC Adv. 2014, 4, 22733.

    13. [13]

      [13] Mittra, K; Chatterjee, S.; Samanta, S.; Dey, A. Inorg. Chem. 2013, 52, 14317.

    14. [14]

      [14] Sirbu, D.; Turta, C.; Gibson, E. A.; Benniston, A. C. Dalton Trans. 2015, 44, 14646.

    15. [15]

      [15] Vecchi, A.; Galloni, P.; Floris, B.; Nemykin, V. N. J. Porphyrins Phthalocyanines 2013, 17, 165.

    16. [16]

      [16] Brahma, S.; Ikbal, S. A.; Dhamija, A.; Rath, S. P. Inorg. Chem, 2014, 53, 2381.

    17. [17]

      [17] Sun, B.; Ou, Z.; Meng, D.; Fang, Y.; Song, Y.; Zhu, W.; Solntsev, P. V.; Nemykin, V. N.; Kadish, K. M. Inorg. Chem. 2014, 53, 8600.

    18. [18]

      [18] Zhu, P.; Kan, L.; Han, X.; Feng, J.; Jia, J.; Zhang, X. Dyes Pigm. 2015, 113, 55.

    19. [19]

      [19] Wang, L.; Li, B.; Shi, Y. Chin. J. Org. Chem. 2006, 26, 120 (in Chinese). (王丽英, 李保国, 石艳菊, 有机化学, 2006, 26, 120.)

    20. [20]

      [20] Majumdar, K. C.; Chakravorty, S.; Pal, N.; Sinha, R. K. Tetrahedron 2009, 65, 7998.

    21. [21]

      [21] Yu, L.; Wang, R.; Gao, B.; Geng, T.; Chen, M.; Lei, C.; Liu, S.; Huang, X.; Lei, M. Chin. J. Lumin. 2012, 33, 1373 (in Chinese). (喻龙, 王蕊欣, 高保娇, 耿天奇, 陈玫君, 雷彩萍, 刘少伟, 黄小利, 雷鸣, 发光学报, 2012, 33, 1373.)

  • 加载中
    1. [1]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    5. [5]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    18. [18]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(0)
  • Abstract views(1029)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return