Citation: Ding Gang, Wang Zeyu, Yin Zhongqiong, Yue Guizhou. Progress in Palladium-Catalyzed Tandem Reaction of Constructing Benzo-Five-Membered Heterocycles[J]. Chinese Journal of Organic Chemistry, ;2015, 36(1): 43-59. doi: 10.6023/cjoc201508012 shu

Progress in Palladium-Catalyzed Tandem Reaction of Constructing Benzo-Five-Membered Heterocycles

  • Corresponding author: Yue Guizhou, yueguizhou@sicau.edu.cn
  • Received Date: 10 August 2015
    Revised Date: 2 November 2015

    Fund Project: the Science & Technology Department of Sichuan Province 2012JY0118

Figures(37)

  • The benzo-five-membered heterocycles existed extensively in many important natural products and also showed excellent bioactivites. Therefore, organic chemists around the world made efforts to develop the highly efficient methods of constructing these heterocycles. Recently, the syntheses of them via transition metal-catalyzed tandem reaction, especially palladium-catalyzed reaction, have been reported widely. This review emphasizes on the palladium-catalyzed tandem reaction of the formation of benzo-five-membered heterocycles and their derivatives reported since 2000.
  • 加载中
    1. [1]

      Luize, P. S.; Ueda-Nakamura, T.; Filho, B. P. D.; Cortez, D. A. G.; Nakamura, C. V. Biol. Pharm. Bull. 2006, 29, 2126.  doi: 10.1248/bpb.29.2126

    2. [2]

      Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Li, H.; Ding, C.; Xu, B.; Hou, X. Acta Chim. Sinica 2014, 72, 765 (in Chinese).  doi: 10.6023/A14040329

    4. [4]

      Liu, J.; Zhu, Q.; Du, J.; Zhang, X. Chin. J. Org. Chem. 2015, 35, 15 (in Chinese).  doi: 10.6023/cjoc201408014
       

    5. [5]

      Ni, C.; Shen, A.; Cao, Y.; Ye, X. Chin. J. Org. Chem. 2014, 34, 278 (in Chinese).  doi: 10.6023/cjoc201308031
       

    6. [6]

      Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90 (in Chinese).  doi: 10.6023/A14110758

    7. [7]

      Xiao, Y.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 383 (in Chinese).  doi: 10.6023/A15010042

    8. [8]

      Zhang, J.; Lu, Q.; Liu, C.; Lei, A. Chin. J. Org. Chem. 2015, 35, 743 (in Chinese).  doi: 10.6023/cjoc201411028
       

    9. [9]

      Zhang, Y.; Feng, B. Chin. J. Org. Chem. 2014, 34, 2406 (in Chinese).  doi: 10.6023/cjoc201408030
       

    10. [10]

      Bai, D.; Li, C.; Li, J.; Jia, X. Chin. J. Org. Chem. 2012, 32, 994 (in Chinese).  doi: 10.6023/cjoc1202073
       

    11. [11]

      Fang, S.; Lü, M.; Long, Y.; Yang, D. Chin. J. Org. Chem. 2011, 31, 1573 (in Chinese).
       

    12. [12]

      Tang, S.; Liang, Y.; Liu, W.-J.; Li, J.-H. Chin. J. Org. Chem. 2004, 24, 1133 (in Chinese).

    13. [13]

      Wang, N. Chin. J. Org. Chem. 2011, 31, 1319 (in Chinese).
       

    14. [14]

      Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.  doi: 10.1021/ar0201106

    15. [15]

      Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.  doi: 10.1021/cr0104330

    16. [16]

      Gang, F.; Xu, G.; Dong, T.; Yang, L.; Du, Z. Chin. J. Org. Chem. 2015, 35, 1428 (in Chinese).  doi: 10.6023/cjoc201502020

    17. [17]

      Sheng, R.-L.; Tang, S.; Zhou, D.; Li, Z.-H.; Fu, M.-J.; Jie, L.; Li, S.-H. Synthesis 2015, 47, 1567.  doi: 10.1055/s-00000084

    18. [18]

      Gansauer, A.; Hildebrandt, S.; Michelmann, A.; Dahmen, T.; von Laufenberg, D.; Kube, C.; Fianu, G. D.; Flowers, R. A. Angew. Chem., Int. Ed. 2015, 54, 7003.  doi: 10.1002/anie.201501955

    19. [19]

      Wei, X.-H.; Wu, Q.-X.; Yang, S.-D. Synlett 2015, 26, 1417.  doi: 10.1055/s-00000083

    20. [20]

      Fu, W.; Xu, F.; Fu, Y.; Zhu, M.; Yu, J.; Xu, C.; Zou, D. J. Org. Chem. 2013, 78, 12202.  doi: 10.1021/jo401894b

    21. [21]

      Grigg, R.; Sansano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. Tetrahedron 1997, 53, 11803.  doi: 10.1016/S0040-4020(97)00754-0

    22. [22]

      Grigg, R.; Sridharan, V. Tetrahedron 1999, 576, 65.

    23. [23]

      Wei, H.-L. Ph.D. Dissertation, Lanzhou University, Lanzhou, 2010 (in Chinese).

    24. [24]

      Shen, J.; Cheng, G.; Cui, X. Prog. Chem. 2012, 24, 1324 (in Chinese).

    25. [25]

      Li, J.-H.; Song, R.-J.; Liu, Y.; Xie, Y.-X. Synthesis 2015, 47, 1195.  doi: 10.1055/s-00000084

    26. [26]

      Fretwell, P.; Grigg, R.; Sansano, J. M.; Sridharan, V.; Sukirthalingam, S.; Wilsona, D.; Redpathb, J. Tetrahedron 2000, 56, 7525.  doi: 10.1016/S0040-4020(00)00659-1

    27. [27]

      Casaschi, A.; Grigg, R.; Sansano, J. M. Tetrahedron 2000, 56, 7553.  doi: 10.1016/S0040-4020(00)00661-X

    28. [28]

      Jeffery, T. Tetrahedron 1996, 52, 10113.  doi: 10.1016/0040-4020(96)00547-9

    29. [29]

      Casaschi, A.; Grigg, R.; Sansano, J. M.; Wilsona, D.; Redpathb, J. Tetrahedron 2000, 56, 7541.  doi: 10.1016/S0040-4020(00)00660-8

    30. [30]

      Grigg, R.; MacLachlan, W. S.; MacPherson, D. T.; Sridharan, V.; Suganthan, S. Tetrahedron 2001, 57, 10335.  doi: 10.1016/S0040-4020(01)01061-4

    31. [31]

      Anwar, U.; Fielding, M. R.; Grigg, R.; Sridharan, V.; Urch, C. J. J. Org. Chem. 2006, 691, 1476.  doi: 10.1016/j.jorganchem.2005.11.045

    32. [32]

      Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron 2007, 63, 3340.  doi: 10.1016/j.tet.2007.02.035

    33. [33]

      Grigg, R.; Mariani, E.; Sridharan, V. Tetrahedron Lett. 2001, 42, 8677.  doi: 10.1016/S0040-4039(01)01811-1

    34. [34]

      Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron Lett. 2003, 44, 8657.  doi: 10.1016/j.tetlet.2003.09.169

    35. [35]

      Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. J. Org. Chem. 2005, 70, 6972.  doi: 10.1021/jo0508604

    36. [36]

      Packer, G.; Lepre, K.; Kankanala, J.; Sridharan, V. RSC Adv. 2014, 4, 3457.  doi: 10.1039/C3RA46906A

    37. [37]

      Liu, P.; Huang, L.; Lu, Y.; Dilmeghani, M.; Baum, J.; Xiang, T.; Adams, J.; Tasker, A.; Larsen, R.; Faul, M. M. Tetrahedron Lett. 2007, 48, 2307.  doi: 10.1016/j.tetlet.2007.01.156

    38. [38]

      Kim, H. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154.  doi: 10.1016/j.tetlet.2008.11.127

    39. [39]

      Day, J.; Frederickson, M.; Hogg, C.; Johnson, C.; Meek, A.; Northern, J.; Reader, M.; Reid, G. Synlett 2015, 26, 2570.  doi: 10.1055/s-00000083

    40. [40]

      Grigg, R.; Savic, V.; Sridharan, V.; Terrier, C. Tetrahedron 2002, 58, 8613.  doi: 10.1016/S0040-4020(02)00763-9

    41. [41]

      Jaegli, S.; Erb, W.; Retailleau, P.; Vors, J. P.; Neuville, L.; Zhu, J. Chem. Eur. J.2010, 16, 5863.  doi: 10.1002/chem.201000312

    42. [42]

      Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2010, 12, 3732.  doi: 10.1021/ol1009703

    43. [43]

      Liu, X.; Li, B.; Gu, Z. J. Org. Chem.2015, 80, 7547.  doi: 10.1021/acs.joc.5b01126

    44. [44]

      René, O.; Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4560.  doi: 10.1021/ol901799p

    45. [45]

      Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3858.  doi: 10.1016/j.tetlet.2008.04.080

    46. [46]

      Ruck, R. T.; Huffman, M. A.; Kim, M. M.; Shevlin, M.; Kandur, W V.; Davies, I. W. Angew. Chem., Int. Ed. 2008, 47, 4711.  doi: 10.1002/(ISSN)1521-3773

    47. [47]

      Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.  doi: 10.1002/anie.201206267

    48. [48]

      Piou, T.; Neuville, L.; Zhu, J. Org. Lett. 2012, 14, 3760.  doi: 10.1021/ol301616w

    49. [49]

      Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2013, 52, 12385.  doi: 10.1002/anie.201306532

    50. [50]

      Bunescu, A.; Piou, T.; Wang, Q.; Zhu, J. Org. Lett.2015, 17, 334.  doi: 10.1021/ol503442n

    51. [51]

      Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Eur. J. Org. Chem.2015, 2015, 2579.

    52. [52]

      Pinto, A.; Jia, Y.; Neuville, L.; Zhu, J. Eur. Chem. J.2007, 13, 961.  doi: 10.1002/(ISSN)1521-3765

    53. [53]

      Lee, H.-S.; Kim, K.-H.; Lim, J.-W.; Kim, J.-N. Bull. Korean Chem. Soc. 2011, 32, 1083.  doi: 10.5012/bkcs.2011.32.3.1083

    54. [54]

      Kamisaki, H.; Yasui, Y.; Takemoto, Y. Tetrahedron Lett. 2009, 50, 2589.  doi: 10.1016/j.tetlet.2009.03.100

    55. [55]

      Hande, S. M.; Nakajima, M.; Kamisaki, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2011, 13, 1828.  doi: 10.1021/ol2003447

    56. [56]

      Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.  doi: 10.1021/ja110377q

    57. [57]

      Liu, X.; Ma, X.; Huang, Y.; Gu, Z. Org. Lett.2013, 15, 4814.  doi: 10.1021/ol402210a

    58. [58]

      Jiang, T. S.; Tang, R. Y.; Zhang, X. G.; Li, X. H.; Li, J. H. J. Org. Chem. 2009, 74, 8834.  doi: 10.1021/jo901963g

    59. [59]

      Jaegli, S.; Dufour, J.; Wei, H. L.; Piou, T.; Duan, X. H.; Vors, J. P.; Neuville, L.; Zhu, J. Org. Lett. 2010, 12, 4498.  doi: 10.1021/ol101778c

    60. [60]

      Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.  doi: 10.1002/anie.201104575

    61. [61]

      Mu, X.; Wu, T.; Wang, H. Y.; Guo, Y. L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.  doi: 10.1021/ja210614y

    62. [62]

      Kamijo, S.; Sasaki, Y.; Kanazawa, C.; Schüßeler, T.; Yamamoto, Y. Angew. Chem., Int. Ed.2005, 44, 7718.  doi: 10.1002/(ISSN)1521-3773

    63. [63]

      Miura, T.; Toyoshima, T.; Ito, Y.; Murakami, M. Chem. Lett. 2009, 38, 1174.  doi: 10.1246/cl.2009.1174

    64. [64]

      Miura, T.; Toyoshima, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2009, 11, 2141.  doi: 10.1021/ol900759f

    65. [65]

      Toyoshima, T.; Mikano, Y.; Miura, T.; Murakami, M. Org. Lett. 2010, 12, 4584.  doi: 10.1021/ol101892b

    66. [66]

      Lira, R.; Wolfe, J. P. J. Am. Chem. Soc. 2004, 126, 13906.  doi: 10.1021/ja0460920

    67. [67]

      Schultz, D. M.; Wolfe, J. P. Org. Lett. 2010, 12, 1208.  doi: 10.1021/ol902974j

    68. [68]

      Thansandote, P.; Hulcoop, D. G.; Langer, M.; Lautens, M. J. Org. Chem.2009, 74, 1673.  doi: 10.1021/jo802604g

    69. [69]

      Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Org. Biomol. Chem. 2011, 9, 1727.  doi: 10.1039/c0ob01052a

    70. [70]

      Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066.  doi: 10.1021/ja803397y

    71. [71]

      Agasti, S.; Maity, S.; Szabo, K. J.; Maiti, D. Adv. Synth. Catal. 2015, 357, 2331.  doi: 10.1002/adsc.v357.10

    72. [72]

      Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed.2007, 46, 3291.  doi: 10.1002/(ISSN)1521-3773

    73. [73]

      Tang, S.; Peng, P.; Pi, S. F.; Liang, Y.; Wang, N. X.; Li, J. H. Org. Lett. 2008, 10, 1179.  doi: 10.1021/ol800080w

    74. [74]

      Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10, 1875.  doi: 10.1021/ol8006315

    75. [75]

      An, G.; Zhou, W.; Zhang, G.; Sun, H.; Han, J.; Pan, Y. Org. Lett. 2010, 12, 4482.  doi: 10.1021/ol101664y

    76. [76]

      Wang, J. Y.; Su, Y. M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y. M.; Wang, X. S. Chem. Commun. 2014, 50, 4108.  doi: 10.1039/c3cc49315f

    77. [77]

      Nicolai, S.; Erard, S.; Gonzalez, D. F.; Waser, J. Org. Lett. 2010, 12, 384.  doi: 10.1021/ol9027286

    78. [78]

      Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130.  doi: 10.1021/ja060291x

    79. [79]

      Yip, K. T.; Zhu, N. Y.; Yang, D. Org. Lett. 2009, 11, 1911.  doi: 10.1021/ol900355h

    80. [80]

      He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626.  doi: 10.1021/ol902348t

    81. [81]

      Du, W.; Gu, Q.; Li, Z.; Yang, D. J. Am. Chem. Soc. 2015, 137, 1130.  doi: 10.1021/ja5102739

    82. [82]

      Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M. J. Am. Chem. Soc. 2006, 128, 14436.  doi: 10.1021/ja064742p

    83. [83]

      Rudolph, A.; Rackelmann, N.; Turcotte-Savard, M.-O.; Lautens, M. J. Org. Chem. 2009, 74, 289.  doi: 10.1021/jo802180h

    84. [84]

      Wu, X. X.; Zhou, P. X.; Wang, L. J.; Xu, P. F.; Liang, Y. M. Chem. Commun. 2014, 50, 3882.  doi: 10.1039/c4cc00809j

    85. [85]

      Thansandote, P.; Raemy, M.; Rudolph, A.; Lautens, M. Org. Lett. 2007, 9, 5255.  doi: 10.1021/ol702472u

    86. [86]

      Muñiz, K. J. Am. Chem. Soc. 2007, 129, 14543.

    87. [87]

      Ying, A.-G.; Ye, W.-D.; Liu, L.; Wu, G.-F.; Chen, X.-Z.; Qian, S.; Zhang, Q.-P. Chin. J. Org. Chem. 2008, 28, 2081 (in Chinese).

    88. [88]

      John, J.; Indu, U.; Suresh, E.; Radhakrishnan, K. V. J. Am. Chem. Soc.2009, 131, 5402.  doi: 10.1021/ja900306m

    89. [89]

      Prakash, P.; Jijy, E.; Preethanuj, P.; Pihko, P. M.; Sarath Chand, S.; Radhakrishnan, K. V. Chem. Eur. J. 2013, 19, 10473.  doi: 10.1002/chem.v19.32

    90. [90]

      Chand, S. S.; Jijy, E.; Prakash, P.; Szymoniak, J.; Preethanuj, P.; Dhanya, B. P.; Radhakrishnan, K. V. Org. Lett. 2013, 15, 3338.  doi: 10.1021/ol401374d

    91. [91]

      Ramirez, T. A.; Wang, Q.; Zhu, Y.; Zheng, H.; Peng, X.; Cornwall, R. G.; Shi, Y. Org. Lett. 2013, 15, 4210.  doi: 10.1021/ol401935c

    92. [92]

      Zheng, H.; Zhu, Y.; Shi, Y. Angew. Chem., Int. Ed. 2014, 53, 11280.  doi: 10.1002/anie.201405365

    93. [93]

      Campbell, C. D.; Greenaway, R. L.; Holton, O. T.; Chapman, H. A.; Anderson, E. A. Chem. Commun. 2014, 50, 5187.  doi: 10.1039/C3CC45634J

    94. [94]

      Senadi, G. C.; Hu, W. P.; Boominathan, S. S.; Wang, J. J. Chem. Eur. J. 2015, 21, 998.  doi: 10.1002/chem.201405933

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(2075)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return