图图式1 无溶剂研磨法快速合成3-芳乙烯基-1, 5-二酮类化合物
Figure 图式1. A grinding-induced solvent-free preparation of 1, 5-diketones via aldol-Michael reaction
传统观点认为, 有机化学反应一般需要溶剂的参与, 在溶液中反应物分子能够均匀分散, 平稳地交换能量.但是大多数有机溶剂具有毒性、挥发性、难回收等缺点.有机溶剂的大量使用会造成环境污染, 危害人类健康.各国化学家创造并研究了许多取代传统有机溶剂的绿色化学方法.如以水为溶剂, 以超临界流体(如CO2)为溶剂, 以室温离子液体为溶剂等方法.而最彻底的方法是完全不使用溶剂, 即无溶剂有机合成.事实上, 有很多反应可以在无溶剂的条件下进行[1~3].对于某些反应, 无溶剂条件下的反应结果反而优于传统反应的结果[4, 5], 这也就成为后来无溶剂反应研究热潮的一个重要原因.无溶剂反应不仅具有污染少、成本低的优势, 而且反应时间短, 操作和处理简便, 选择性和反应效率也很高, 主要是因为没有溶剂分子的介入, 造成了反应部位的局部浓度过高, 同时又会增强分子间的束缚, 使反应分子有序排列, 从而实现定向反应.近年来, 无溶剂反应已经引起了化学和化工界的很大关注, 新型的无溶剂合成技术已经广泛应用于化学和医药等领域.
1, 5-二酮类化合物是一类重要的有机合成中间体[6], 以其为底物与其它试剂反应可以合成许多具有生理活性的杂环化合物[7]和其它多功能性化合物[8], 被广泛用于药物合成、组合化学等领域.在一些天然产物全合成研究中, 1, 5-二酮结构单元的构筑也是化学家们关注和研究的热点内容[9, 10].目前, 已有很多关于1, 5-二酮类化合物的合成方法被报道[9~18].最常见且比较有效的方法是通过烯醇化合物对α, β-不饱和羰基化合物的Michael加成而制得[11~18], 而α, β-不饱和羰基化合物的获得则要通过醛酮之间Aldol缩合反应实现[19, 20].这些方法在操作上都比较繁琐, 且都需要有机溶剂的参与.因此, 寻找一种有效的方法来合成1, 5-二酮类化合物就变得尤为重要.我们实验小组也对无溶剂有机合成做了一定的研究[21~24], 在此我们探索了无溶剂“一锅法”研磨快速合成了3-芳乙烯基-1, 5-二酮类化合物(Scheme 1).
首先, 我们把肉桂醛(1a)和苯乙酮(2a)混合, 然后加入NaOH在室温无溶剂条件下进行研磨.实验结果表明, 1a和2a首先发生Aldol缩合反应得到1, 5-二苯基-2, 4-戊二烯-1-酮(3a), 然后过量的2a与3a又可以发生Michael加成反应生成1, 5-二苯基-3-苯乙烯基-1, 5-戊二酮(4a).显然, 过量的2a影响着3a和4a的产率和比例.所以我们就从反应物的物料比、时间、温度以及碱种类及用量进行了反应条件的优化, 希望高产率地分别获得3a或4a.
我们首先考察了反应的物料比对反应产率的影响.由表 1中数据可以看出, 随着2a和NaOH的物质的量比增大, 化合物4a的产率逐渐升高.当1a、2a和NaOH的物质的量比变为1:3:3时, 化合物4a的产率可达到43%. (表 1, Entries1~5).如果减少2a的量则有利于中间产物3a的生成.
![]() | |||||
| Entry | Molar ratio of 1a:2a:base | Base | Time/min | Yieldb/% | |
| 3a | 4a | ||||
| 1 | 2:1:1 | NaOH | 10 | 53 | 5 |
| 2 | 1:1:1 | NaOH | 10 | 67 | 4 |
| 3 | 1:1.5:1.5 | NaOH | 10 | 52 | 11 |
| 4 | 1:2:2 | NaOH | 10 | 17 | 39 |
| 5 | 1:3:3 | NaOH | 10 | 7 | 43 |
| 6 | 1:1:1 | NaOH | 5 | 74 | Trace |
| 7 | 1:1:1 | NaOH | 7 | 71 | Trace |
| 8 | 1:1:1 | KOH | 5 | 68 | Trace |
| 9 | 1:1:1 | K2CO3 | 5 | 0 | 0 |
| 10 | 1:1:1 | NaOCH3 | 5 | 57 | Trace |
| 11 | 1:1:1 | NEt3 | 5 | 0 | 0 |
| 12 | 1:1:1 | LiOH | 5 | 0 | 0 |
| 13c | 1:1:1 | NaOH | 5 | 42 | Trace |
| 14d | 1:1:1 | NaOH | 5 | 38 | 9 |
| 15 | 1:2:2 | NaOH | 5 | 45 | 22 |
| 16 | 1:2.5:2.5 | NaOH | 5 | 40 | 26 |
| 17 | 1:3:3 | NaOH | 5 | 25 | 39 |
| 18 | 1:3:3 | NaOH | 10 | 10 | 45 |
| 19 | 1:3:3 | NaOH | 15 | Trace | 67 |
| 20 | 1:3:3 | NaOH | 20 | Trace | 50 |
| 21 | 1:3:3 | KOH | 15 | Trace | 40 |
| 22 | 1:3:3 | NaOCH3 | 15 | 27 | 29 |
| 23 | 1:3:3 | LiOH | 15 | 0 | 0 |
| 24 | 1:3:3 | K2CO3 | 15 | 0 | 0 |
| 25 | 1:3:3 | NEt3 | 15 | 0 | 0 |
| 26 | 1:3:3 | DBU | 15 | Trace | 62 |
| 27d | 1:3:3 | NaOH | 15 | Trace | 51 |
| 28e | 1:3:3 | NaOH | 60 | Trace | Trace |
| a反应条件:肉桂醛1a(1 mmol), 苯乙酮2a和碱在空气中室温下研磨, TLC检测反应; b分离产率; c 0 ℃; d 40 ℃; e溶剂为乙醇(5 mL). | |||||
反应时间对3a和4a的产率也有很大的影响.由表 1中数据可以看出, 当等物质的量的1a, 2a和NaOH在室温下研磨5 min时, 3a的产率最高(表 1, Entry 6). 4a生成的最佳反应时间需要在2a过量的条件下反应15 min, 才能尽可能地生成4a, 获得最佳的产率(67%, 表 1, Entry 19).如果延长反应时间, 对3a和4a的生成都不利.
碱的种类也对产率有一定的影响.由表 1中数据可以看出, 强碱如NaOH, KOH和NaOCH3都有利于3a和4a的生成(表 1, Entries 6, 8, 10, 19), 但NaOH是最优的碱(表 1, Entries 6, 19).
最后, 我们对反应温度也进行了优化.发现升温和降温都不利于3a和4a的生成(表 1, Entries 6, 13, 14, 27).
溶剂的使用与否对反应实验结果有较大的影响.当1a、2a和NaOH在乙醇中反应时, 反应速率很慢, 延长反应时间或升高反应温度对反应速率没有明显改善(表 1, Entry 28).
我们最终确定生成3a的最佳反应条件为:无溶剂, 研磨时间为5 min, NaOH作为碱, 1a、2a和NaOH的物质的量比为1:1:1;生成4a的最佳反应条件为:无溶剂, 研磨时间为15 min, NaOH作为碱, 1a、2a和NaOH的物质的量比为1:3:3.
在最佳反应条件下, 我们对各种芳基甲基酮和α, β-不饱和醛进行了底物拓展, 以探讨该方法对底物的适用性.
在上述生成3a的最佳反应条件下, 我们探讨了不同芳基甲基酮和α, β-不饱和醛的反应.实验结果表明, 芳基甲基酮和α, β-不饱和醛反应均可高产率地得到1, 4, 5-三取代-2, 4-戊二烯-1-酮类化合物(表 2).由表 2我们可以看出, 不同结构芳基甲基酮反应活性不一样.缺电子芳基甲基酮反应活性明显高于富电子芳基甲基酮(表 2, Entries 2~5).苯环上取代基的位置也会影响芳基甲基酮的反应活性, 邻位取代的芳基甲基酮反应活性高于对位取代的芳基甲基酮(表 2, Entries 2~4).杂环酮也可以与α, β-不饱和醛发生反应生成相应的产物(表 2, Entries 6~8).除此之外, 我们发现α-取代的α, β-不饱和醛也能够与苯乙酮反应生成相应的产物, 并取得了较高产率(表 2, Entries 11~13).
![]() | ||||||
| Entry | R1 | R2 | R3 | 3 | Time/min | Yieldb/% |
| 1 | C6H5 | H | C6H5 | 3a | 5 | 74 |
| 2 | C6H5 | H | 2-ClC6H4 | 3b | 4 | 86 |
| 3 | C6H5 | H | 3-BrC6H4 | 3c | 5 | 82 |
| 4 | C6H5 | H | 4-BrC6H4 | 3d | 6 | 76 |
| 5 | C6H5 | H | 4-CH3C6H4 | 3e | 4 | 70 |
| 6 | C6H5 | H | 2-(5-CH3C4H2O) | 3f | 5 | 73 |
| 7 | C6H5 | H | 3-C5H4N | 3g | 6 | 70 |
| 8 | C6H5 | H | 3-[2, 5-(CH3)2C4HS] | 3h | 7 | 76 |
| 9 | 4-CH3OC6H4 | H | C6H5 | 3i | 4 | 88 |
| 10 | 4-CH3OC6H4 | H | 4-CH3C6H4 | 3j | 6 | 84 |
| 11 | C6H5 | CH3 | C6H5 | 3k | 6 | 83 |
| 12 | C6H5 | Br | C6H5 | 3l | 4 | 79 |
| 13 | 2-C4H3O | CH3 | C6H5 | 3m | 5 | 84 |
| a反应条件: α, β-不饱和醛1(1 mmol)、酮2(1 mmol)、氢氧化钠(1 mmol)在空气中无溶剂研磨. b分离产率. | ||||||
完成上述研究后, 我们在相应的最佳反应条件下, 通过Aldol-Michael反应用各种α, β-不饱和醛和甲基酮“一锅法”合成了一系列3-芳乙烯基-1, 5-戊二酮类化合物4(表 3).实验结果表明, 在最佳的反应条件下, 含不同取代基的α, β-不饱和醛都能够与芳基甲基酮反应.芳基甲基酮芳环上取代基的电子效应对反应产率有较大影响.缺电子芳基甲基酮反应活性相对较高(表 3, Entries 2~7).杂环酮也可以反应生成相应的目标产物, 但反应产率较肉桂醛低(表 3, Entries 1, 5~7). α-取代的α, β-不饱和醛也能够与芳基甲基酮以中等以上的产率得到相应的目标产物.
![]() | |||||||
| Entry | R1 | R2 | R3 | 4 | Time/min | Yieldb/% | 4:3c |
| 1 | C6H5 | H | C6H5 | 4a | 15 | 67 | 92:8 |
| 2 | C6H5 | H | 3-BrC6H4 | 4b | 15 | 71 | 94:6 |
| 3 | C6H5 | H | 2-ClC6H4 | 4c | 15 | 75 | 72:28 |
| 4 | C6H5 | H | 4-CH3C6H4 | 4d | 15 | 56 | 87:13 |
| 5 | C6H5 | H | 3-C5H4N | 4e | 17 | 50 | 60:40 |
| 6 | C6H5 | H | 2-(5-CH3C4H2O) | 4f | 16 | 54 | 60:40 |
| 7 | C6H5 | H | 3-[2, 5-(CH3)2C4HS] | 4g | 16 | 46 | 58:42 |
| 8 | 4-CH3OC6H4 | H | C6H5 | 4h | 16 | 62 | 96:4 |
| 9 | 4-CH3OC6H4 | H | 3-BrC6H4 | 4i | 15 | 54 | 95:5 |
| 10 | 4-CH3OC6H4 | H | 3-C5H4N | 4j | 17 | 51 | 92:8 |
| 11 | 4-CH3OC6H4 | H | 4-CH3C6H4 | 4k | 18 | 57 | 92:8 |
| 12 | C6H5 | CH3 | C6H5 | 4l | 15 | 66 | 72:28 |
| 13 | C6H5 | CH3 | 4-CH3C6H4 | 4m | 16 | 51 | 86:14 |
| 14 | C6H5 | CH3 | 2-ClC6H4 | 4n | 15 | 77 | 87:13 |
| 15 | 2-C4H3O | CH3 | C6H5 | 4o | 16 | 63 | 81:19 |
| a反应条件: α, β-不饱和醛1(1 mmol)、酮2(3 mmol)、氢氧化钠(3 mmol)在空气中无溶剂研磨. b分离产率. c根据粗1H NMR计算. | |||||||
在上述研究基础之上, 我们对此反应提出了可能的反应机理(Scheme 2).首先在碱的存在下, 烯醇中间体A和α, β-不饱和醛发生Aldol反应生成化合物3.接着化合物3作为一个Michael受体与烯醇中间体A发生Michael加成反应得到化合物4.
我们以α, β-不饱和醛和芳香酮为原料, 在室温无溶剂的条件下, 通过“一锅法”串联反应温和、高效、简便地合成了3-芳乙烯基-1, 5-戊二酮类化合物, 并获得了中等以上的产率.该方法操作简单, 更重要的是对环境友好, 不使用有机溶剂和金属催化剂, 同时又可以达到原子和能量的高效利用, 符合绿色化学的理念.
红外光谱仪为Alpha Centauri FI-IR型仪器, 固体采用KBr压片法, 液体采用液膜法; 核磁共振谱用BRUKER PT jxf790425AM 400MHz型核磁共振仪测定, 以氘代氯仿作为溶剂, TMS为内标; 高分辨质谱用Bruker APEX II傅里叶变换离子回旋共振质谱仪测定, ESI源; 熔点测定用显微熔点测定仪测定, 温度计未校正.实验中所用各种取代α, β-不饱和醛、芳香酮、氢氧化钠、氢氧化钾、氢氧化锂、碳酸钾、甲醇钠、三乙胺、石油醚、乙酸乙酯、乙醇、硅胶(200~300目)、无水硫酸镁均为国产分析纯级试剂.
30 mL梨形瓶中加入α, β-不饱和醛、芳香甲基酮及NaOH, 用玻璃棒充分地研磨, TLC检测反应完全后, 加入蒸馏水(10 mL)和乙酸乙酯(10 mL)溶解稀释.分出有机相, 水相用乙酸乙酯(10 mL×3)萃取, 合并有机相, 用无水硫酸镁干燥, 蒸去溶剂后, 剩余物用乙酸乙酯和石油醚进行柱层析, 分离得纯品3a~3m和4a~4o.
(2E, 4E)-1, 5-二苯基-2, 4-戊二烯-1-酮(3a)[25]:黄色固体, 产率74%. m.p. 102~103 ℃(文献值[25]102~103 ℃); 1H NMR (400 MHz, CDCl3) δ: 8.02~7.96 (m, 2H), 7.66~7.54 (m, 2H), 7.55~7.46 (m, 4H), 7.42~7.30 (m, 3H), 7.10 (d, J=15.2 Hz, 1H), 7.06~7.01 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 190.4, 144.8, 141.8, 138.2, 136.1, 132.6, 129.2, 128.8, 128.5, 128.3, 127.3, 126.9, 125.4; IR (KBr) ν: 3063, 3023, 1654, 1583, 1445, 1352, 1285, 1246, 998.
(2E, 4E)-5-苯基-1-(2-氯苯基)-2, 4-戊二烯-1-酮(3b):淡黄色固体, 产率86%. m.p. 66~67 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.51~7.29 (m, 9H), 7.22 (dd, J=15.5, 9.7 Hz, 1H), 6.96 (q, J=15.6 Hz, 2H), 6.66 (d, J=15.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 193.8, 146.3, 142.4, 139.2, 135.9, 131.2, 130.2, 129.6, 129.4, 129.2, 128.8, 127.3, 126.7, 126.6; IR (KBr) ν: 3068, 3031, 2921, 1649, 1614, 1579, 1432, 1351, 1286, 998; HRMS calcd for C17H14ClO [M+H]+ 269.0728, found 269.0722.
(2E, 4E)-5-苯基-1-(3-溴苯基)-2, 4-戊二烯-1-酮(3c):淡黄色固体, 产率82%. m.p. 85~87 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.10 (s, 1H), 7.88 (d, J=8.0 Hz, 1H), 7.68 (d, J=8.0 Hz, 1H), 7.63~7.59 (m, 1H), 7.50 (d, J=7.2 Hz, 2H), 7.38~7.33 (m, 4H), 7.07~6.97 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.8, 145.6, 142.6, 140.0, 135.9, 135.4, 131.4, 130.1, 129.4, 128.8, 127.3, 126.8, 126.7, 124.7, 122.9; IR (KBr) ν: 3063, 3031, 1662, 1582, 1433, 1353, 1304, 1235, 996; HRMS calcd for C17H14BrO [M+H]+ 313.0223, found 313.0215.
(2E, 4E)-5-苯基-1-(4-溴苯基)-2, 4-戊二烯-1-酮(3d)[26]:淡黄色固体, 产率76%. m.p. 150~151 ℃(文献值[26]145~146 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.84 (d, J=8.4 Hz, 2H), 7.71~7.57 (m, 3H), 7.50 (d, J=7.2 Hz, 2H), 7.40~7.33 (m, 3H), 7.08~6.98 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 189.2, 145.3, 142.4, 137.0, 136.0, 131.8, 129.9, 129.3, 128.9, 127.7, 127.3, 126.8, 124.8; IR (KBr) ν: 3026, 1649, 1586, 1448, 1396, 1351, 1288, 1252, 991.
(2E, 4E)-5-苯基-1-(4-甲苯基)-2, 4-戊二烯-1-酮(3e)[25]:淡黄色固体, 产率70%. m.p. 93~94 ℃(文献值[25] 91~92 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.90 (d, J=7.6 Hz, 2H), 7.60 (dd, J=16.0, 8.0 Hz, 1H), 7.50 (d, J=8.0 Hz, 2H), 7.42~7.22 (m, 5H), 7.10 (d, J=16.0 Hz, 1H), 7.02~7.01 (m, 2H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 189.9, 144.3, 143.4, 141.5, 136.2, 135.7, 129.2, 129.1, 128.8, 128.5, 127.2, 127.0, 125.5, 21.6; IR (KBr) ν: 3028, 2918, 1659, 1607, 1580, 1349, 1284, 1252, 1182, 998.
(2E, 4E)-5-苯基-1-[2-(5-甲基呋喃基)]-2, 4-戊二烯-1-酮(3f)[27]:黄色固体, 产率73%. m.p. 108~109 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.69~7.57 (m, 1H), 7.49 (d, J=8.0 Hz, 2H), 7.41~7.22 (m, 3H), 7.19 (s, 1H), 7.00~6.93 (m, 3H), 6.19 (s, 1H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 177.3, 157.9, 152.5, 143.1, 141.5, 136.1, 129.1, 128.8, 127.2, 126.8, 124.9, 119.2, 109.2, 14.1; IR (KBr) ν: 3033, 2921, 1651, 1578, 1512, 1282, 1208, 1059, 996.
(2E, 4E)-5-苯基-1-(3-吡啶基)-2, 4-戊二烯-1-酮(3g)[28]:黄色固体, 产率70%. m.p. 97~98 ℃(文献值[28]104~105 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.19 (s, 1H), 8.79 (d, J=4.0 Hz, 1H), 8.26 (d, J=8.0 Hz, 1H), 7.69~7.60 (m, 1H), 7.52 (d, J=4.0 Hz, 2H), 7.44 (d, J=4.0 Hz, 1H), 7.42~7.31 (m, 3H), 7.06 (t, J=8.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.9, 152.9, 149.6, 145.9, 143.0, 135.8, 135.7, 133.5, 129.4, 128.8, 127.4, 126.6, 124.6, 123.6; IR (KBr) ν: 3026, 1653, 1583, 1448, 1415, 1356, 1286, 1258, 1005.
(2E, 4E)-5-苯基-1-[3-(2, 5-二甲基噻吩基)]-2, 4-戊二烯-1-酮(3h):淡黄色固体, 产率76%. m.p. 84~85 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.55~7.41 (m, 3H), 7.38~7.29 (m, 3H), 7.04~6.92 (m, 3H), 6.83 (d, J=16.0 Hz, 1H), 2.69 (s, 3H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 186.4, 146.9, 143.4, 141.1, 136.7, 136.2, 135.1, 129.0, 128.8, 128.5, 127.1, 126.9, 125.9, 15.8, 14.9; IR (KBr) ν: 3025, 2918, 1648, 1584, 1479, 1364, 1240, 1125, 997, HRMS calcd for C17H17OS [M+H]+ 269.0995, found 269.0988.
(2E, 4E)-1-苯基-5-(4-甲氧基苯基)-2, 4-戊二烯-1-酮(3i)[29]:黄色固体, 产率88%. m.p. 116~118 ℃(文献值[29]113~115 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J=7.9 Hz, 2H), 7.65~7.52 (m, 2H), 7.47 (dd, J=16.6, 8.0 Hz, 4H), 7.08~6.98 (m, 1H), 6.98~6.84 (m, 4H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.5, 160.1, 145.3, 141.7, 138.4, 132.4, 128.9, 128.8, 128.5, 128.3, 124.8, 124.3, 114.3, 55.3; IR (KBr) ν: 3011, 2925, 1653, 1587, 1508, 1351, 1299, 1259, 998, 815, 688.
(2E, 4E)-1-(4-甲苯基)-5-(4-甲氧基苯基)-2, 4-戊二烯-1-酮(3j)[30]:淡黄色固体, 产率84%. m.p. 103~105 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.89 (d, J=8.0 Hz, 2H), 7.59 (dd, J=16.0, 4.0 Hz, 1H), 7.44 (d, J=8.0 Hz, 2H), 7.28 (d, J=8.0 Hz, 2H), 7.05 (d, J=16.0 Hz, 1H), 6.97~6.83 (m, 4H), 3.83 (s, 3H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 189.9, 160.5, 144.9, 143.2, 141.4, 135.8, 129.2, 129.0, 128.7, 128.4, 124.9, 124.3, 114.3, 55.3, 21.6; IR (KBr) ν: 2998, 2920, 2843, 1651, 1581, 1509, 1356, 1262, 1181, 1006, 824.
(2E, 4E)-4-甲基-1, 5-二苯基-2, 4-戊二烯-1-酮(3k)[25]:淡黄色固体, 产率83%. m.p. 72~73 ℃(文献值[25]70~71 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.0 Hz, 2H), 7.70~7.54 (m, 2H), 7.50 (t, J=8.0 Hz, 2H), 7.44~7.23 (m, 5H), 7.06 (d, J=16.0 Hz, 1H), 6.97 (s, 1H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.8, 150.2, 140.5, 138.5, 136.7, 134.6, 132.5, 129.5, 128.5, 128.4, 128.3, 127.8, 121.5, 13.9; IR (KBr) ν: 3053, 2920, 1656, 1579, 1445, 1352, 1285, 1246, 998, 693.
(2E, 4Z)-1, 5-二苯基-4-溴-2, 4-戊二烯-1-酮(3l):淡黄色固体, 产率79%. m.p. 102~103 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.04 (d, J=8.0 Hz, 2H), 7.81 (d, J=8.0 Hz, 2H), 7.64~7.58 (m, 2H), 7.51~7.46 (m, 3H), 7.46~7.39 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 189.6, 144.7, 140.1, 137.9, 134.8, 133.0, 130.1, 129.5, 128.7, 128.5, 128.4, 126.4, 121.2; IR (KBr) ν: 3059, 2925, 1654, 1567, 1446, 1301, 1269, 1213, 1014, 968, 687; HRMS calcd for C17H14BrO [M+H]+ 313.0223, found 313.0215.
(2E, 4E)-4-甲基-1-苯基-5-(2-呋喃基)-2, 4-戊二烯-1-酮(3m):黄色固体, 产率84%. m.p. 112~114 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.0 Hz, 2H), 7.57 (dd, J=16.0, 8.0 Hz, 2H), 7.50~7.49 (m, 3H), 7.06 (d, J=16.0 Hz, 1H), 6.68 (s, 1H), 6.56 (s, 1H), 6.45 (s, 1H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.5, 152.8, 149.5, 143.5, 138.5, 132.4, 132.1, 128.5, 128.3, 126.9, 121.1, 113.6, 112.0, 13.9; IR (KBr) ν: 3117, 1648, 1559, 1469, 1306, 1213, 1019, 979; HRMS calcd for C16H15O2 [M+H]+ 239.1067, found 239.1060.
(E)-3-苯乙烯基-1, 5-二苯基-1, 5-戊二酮(4a)[31]:白色固体, 产率67%. m.p. 84~85 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.0 Hz, 4H), 7.59~7.51 (m, 2H), 7.45 (dd, J=12.0, 4.0 Hz, 4H), 7.31~7.21 (m, 4H), 7.20~7.14 (m, 1H), 6.42 (d, J=16.0 Hz, 1H), 6.29 (dd, J=16.0, 8.0 Hz, 1H), 3.67~3.57 (m, 1H), 3.35 (dd, J=16.0, 8.0 Hz, 2H), 3.19 (dd, J=16.0, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 198.8, 137.0, 137.1, 133.1, 131.9, 130.5, 128.6, 128.4, 128.1, 127.2, 126.2, 43.4, 35.0; IR (KBr) ν: 3029, 2893, 1682, 1597, 1597, 1447, 1202, 964.
(E)-3-苯乙烯基-1, 5-二(3-溴苯基)-1, 5-戊二酮(4b):黄色油状物, 产率71%. 1H NMR (400 MHz, CDCl3) δ: 8.11 (s, 2H), 7.92 (d, J=8.0 Hz, 2H), 7.69 (d, J=8.0 Hz, 2H), 7.39~7.23 (m, 6H), 7.21~7.18 (m, 1H), 6.44 (d, J=16.0 Hz, 1H), 6.26 (dd, J=16.0, 8.0 Hz, 1H), 3.64~3.53 (m, 1H), 3.32 (dd, J=16.0, 8.0 Hz, 2H), 3.17 (dd, J=16.0, 80 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 197.2, 138.6, 136.8, 136.0, 131.2, 130.9, 130.2, 128.4, 127.4, 126.6, 126.2, 123.0, 43.3, 34.7; IR (KBr) ν: 3024, 2897, 1688, 1566, 1492, 1469; HRMS calcd for C25H21Br2O2 [M+H]+534.9702, found 534.9700.
(E)-3-苯乙烯基-1, 5-二(2-氯苯基)-1, 5-戊二酮(4c):黄色油状物, 产率75%. 1H NMR (400 MHz, CDCl3) δ: 7.44~7.09 (m, 13H), 6.39 (d, J=16.0 Hz, 1H), 6.16 (dd, J=16.0, 8.0 Hz, 1H), 3.58~3.47 (m, 1H), 3.30 (dd, J=16.0, 8.0 Hz, 2H), 3.19 (dd, J=16.0, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 201.7, 139.4, 137.0, 131.7, 131.1, 130.9, 130.8, 130.5, 129.0, 128.4, 127.3, 126.9, 126.2, 47.4, 34.1; IR (KBr) ν: 3026, 2922, 1697, 1589, 1533, 1493, 1468, 1433; HRMS calcd for C25H21Cl2O2 [M+H]+ 445.0733, found 445.0731.
(E)-3-苯乙烯基-1, 5-二(4-甲苯基)-1, 5-戊二酮(4d):黄色油状物, 产率56%. 1H NMR (400 MHz, CDCl3) δ: 7.90~7.79 (m, 4H), 7.36~7.16 (m, 9H), 6.41 (d, J=16.0 Hz, 1H), 6.29 (dd, J=16.0, 8.0 Hz, 1H), 3.66~3.55 (m, 1H), 3.32 (dd, J=16.0, 8.0 Hz, 2H), 3.15 (dd, J=16.0, 8.0 Hz, 2H), 2.41 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 198.5, 143.8, 137.2, 134.6, 132.1, 130.3, 129.3, 128.4, 128.3, 127.2, 126.2, 43.3, 35.2, 21.6; IR (KBr) ν: 3026, 2949, 1678, 1607, 1552, 1490, 1445, 1352, 980, 808; HRMS calcd for C27H27O2 [M+H]+ 405.1825, found 405.1822.
(E)-3-苯乙烯基-1, 5-二(3-吡啶基)-1, 5-戊二酮(4e):黄色油状物, 产率50%. 1H NMR (400 MHz, CDCl3) δ: 9.21 (s, 2H), 8.79 (s, 2H), 8.26 (d, J=8.0 Hz, 2H), 7.43 (dd, J=8.0, 4.0 Hz, 2H), 7.35~7.20 (m, 5H), 6.47 (d, J=16.0 Hz, 1H), 6.27 (dd, J=16.0, 8.0 Hz, 1H), 3.70~3.59 (m, 1H), 3.38 (dd, J=16.0, 8.0 Hz, 2H), 3.26 (dd, J=16.0, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 197.4, 153.6, 149.7, 136.7, 135.4, 132.1, 131.2, 130.9, 128.5, 127.5, 126.2, 123.6, 43.5, 34.5; IR (KBr) ν: 3030, 2955, 1688, 1647, 1585, 1533, 1493, 1472, 968; HRMS calcd for C23H21N2O2 [M+H]+ 379.1417, found 379.1414.
(E)-3-苯乙烯基-1, 5-二[2-(5-甲呋喃基)]-1, 5-戊二酮(4f):黄色油状物, 产率54%. 1H NMR (400 MHz, CDCl3) δ: 7.31~7.22 (m, 4H), 7.19~7.18 (m, 3H), 6.44 (d, J=16.0 Hz, 1H), 6.24 (dd, J=16.0, 8.0 Hz, 1H), 6.14 (d, J=8.0 Hz, 2H), 3.59~3.47 (m, 1H), 3.08 (dd, J=15.6, 6.4 Hz, 2H), 2.97 (dd, J=15.6, 7.2 Hz, 2H), 2.38 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 186.9, 157.9, 151.5, 137.1, 131.6, 130.5, 128.3, 127.2, 126.2, 119.6, 108.9, 42.8, 35.7, 14.0; IR (KBr) ν: 3028, 2955, 1738, 1664, 1589, 1408, 1373, 1269, 1209, 1074, 1028, 966; HRMS calcd for C23H22NaO4 [M+Na]+ 385.1410, found 385.1409.
(E)-3-苯乙烯基-1, 5-二[3-(2, 5-二甲基噻吩)]-1, 5-戊二酮(4g):黄色油状物, 产率46%. 1H NMR (400 MHz, CDCl3) δ: 7.31~7.24 (m, 4H), 7.20~7.16 (m, 1H), 7.04 (s, 2H), 6.40 (d, J=16.0 Hz, 1H), 6.25 (dd, J=16.0, 8.0 Hz, 1H), 3.54~3.44 (m, 1H), 3.08 (dd, J=16.0, 8.0 Hz, 2H), 2.97 (dd, J=16.0, 8.0 Hz, 2H), 2.63 (s, 6H), 2.40 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 194.9, 147.4, 137.3, 135.7, 135.1, 132.4, 130.0, 128.4, 127.1, 126.2, 126.1, 46.4, 34.9, 16.0, 15.0; IR (KBr) ν: 3026, 2955, 1668, 1598, 1566, 1366, 1246, 1225, 1126, 1084, 966; HRMS calcd for C25H26NaO2S2 [M+Na]+ 445.1266, found 445.1265.
(E)-3-(4-甲氧基苯乙烯基)-1, 5-二苯基-1, 5-戊二酮(4h):淡黄色固体, 产率62%. m.p. 90~92 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.0 Hz, 4H), 7.58~7.54 (m, 2H), 7.46 (t, J=7.6 Hz, 4H), 7.22 (d, J=8.0 Hz, , 2H), 6.80 (d, J=8.0 Hz, 2H), 6.36 (d, J=16.0 Hz, 1H), 6.14 (dd, J=16.0, 8.0 Hz, 1H), 3.77 (s, 3H), 3.65~3.54 (m, 1H), 3.35 (dd, J=16.0, 8.0 Hz, 2H), 3.18 (dd, J=16.0, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 198.9, 159.0, 137.1, 133.0, 129.9, 129.8, 129.7, 128.6, 128.2, 127.3, 113.9, 55.3, 43.6, 35.1; IR (KBr) ν: 3034, 2953, 1736, 1678, 1578, 1543, 1448, 1379, 1248, 1030, 974, 819, 756; HRMS calcd for C26H24NaO3 [M+Na]+ 407.1618, found 407.1613.
(E)-3-(4-甲氧基苯乙烯基)-1, 5-二(3-溴苯基)-1, 5-戊二酮(4i):黄色油状物, 产率54%. 1H NMR (400 MHz, CDCl3) δ: 8.11 (s, 2H), 7.92 (d, J=8.0 Hz, 2H), 7.69 (d, J=8.0 Hz, 2H), 7.35 (t, J=8.0 Hz, 2H), 7.23 (d, J=8.0 Hz, 2H), 6.81 (d, J=8.0 Hz, 2H), 6.38 (d, J=16.0 Hz, 1H), 6.10 (dd, J=16.0, 8.0 Hz, 1H), 3.79 (s, 3H), 3.62~3.50 (m, 1H), 3.31 (dd, J=16.4, 6.4 Hz, 2H), 3.16 (dd, J=16.0, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 197.4, 159.1, 138.7, 136.0, 131.2, 130.3, 130.2, 129.6, 129.0, 127.4, 126.7, 123.0, 113.9, 55.3, 43.5, 34.8; IR (KBr) ν: 3032, 2955, 1688, 1645, 1566, 1510, 1250, 1034, 966; HRMS calcd for C26H22Br2NaO3 [M+Na]+ 564.9807, found 564.9799.
(E)-3-(4-甲氧基苯乙烯基)-1, 5-二(3-吡啶基)-1, 5-戊二酮(4j):黄色油状物, 产率51%. 1H NMR (400 MHz, CDCl3) δ: 9.21 (s, 2H), 8.78 (s, 2H), 8.26 (d, J=8.0 Hz, 2H), 7.44~7.41 (m, 2H), 7.23 (d, J=8.0 Hz, 2H), 6.81 (d, J=8.0 Hz, 2H), 6.40 (d, J=16.0 Hz, 1H), 6.11 (dd, J=16.0, 8.0 Hz, 1H), 3.78 (s, 3H), 3.66~3.56 (m, 1H), 3.36 (dd, J=16.0, 8.0 Hz, 2H), 3.24 (dd, J=16.8, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 197.6, 159.2, 153.6, 149.7, 135.4, 132.2, 130.5, 129.5, 128.7, 127.4, 123.6, 113.9, 55.3, 43.6, 34.6; IR (KBr) ν: 3034, 2955, 1689, 1607, 1585, 1531, 1527, 1512; 1418, 1366, 1248, 1028, 968; HRMS calcd for C24H23N2O3 [M+H]+ 387.1703, found 387.1703.
(E)-3-(4-甲氧基苯乙烯基)-1, 5-二(4-甲苯基)-1, 5-戊二酮(4k):黄色油状物, 产率57%. 1H NMR (400 MHz, CDCl3) δ: 7.89 (d, J=8.0 Hz, 4H), 7.26~7.21 (m, 6H), 6.79 (d, J=8.0 Hz, 2H), 6.35 (d, J=16.0 Hz, 1H), 6.13 (dd, J=16.0, 8.0 Hz, 1H), 3.78 (s, 3H), 3.61~3.53 (m, 1H), 3.31 (dd, J=16.0, 8.0 Hz, 2H), 3.14 (dd, J=16.0, 8.0 Hz, 2H), 2.40 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 198.6, 158.9, 143.8, 134.7, 130.0, 129.9, 129.7, 129.2, 128.3, 127.3, 113.8, 55.2, 43.5, 35.3, 21.6; IR (KBr) ν: 3032, 2955, 1680, 1607, 1574, 1408, 1362, 1290, 1248, 1034, 970; HRMS calcd for C28H28NaO3 [M+Na]+ 435.1931, found 435.1924.
(E)-3-(1-苯基-2-丙烯基)-1, 5-二苯基-1, 5-戊二酮(4l):黄色油状物, 产率66%. 1H NMR (400 MHz, CDCl3) δ: 8.02 (d, J=8.0 Hz, 4H), 7.57 (t, J=8.0 Hz, 2H), 7.47 (t, J=7.6 Hz, 4H), 7.25 (d, J=8.0 Hz, 2H), 7.15 (t, J=8.0 Hz, 1H), 7.10 (d, J=8.0 Hz, 2H), 6.22 (s, 1H), 3.62~3.53 (m, 1H), 3.34 (dd, J=16.0, 8.0 Hz, 2H), 3.15 (dd, J=16.0, 8.0 Hz, 2H), 1.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 199.0, 138.9, 137.7, 137.0, 133.0, 128.8, 128.6, 128.2, 127.9, 126.8, 126.1, 42.7, 41.6, 15.2; IR (KBr) ν: 3032, 2955, 1682, 1597, 1580, 1493, 1448, 1354, 984; HRMS calcd for C26H24NaO2 [M+Na]+ 391.1669, found 391.1667.
(E)-3-(1-苯基-2-丙烯基)-1, 5-二(4-甲苯基)-1, 5-戊二酮(4m):无色油状物, 产率51%. 1H NMR (400 MHz, CDCl3) δ: 7.92 (d, J=8.0 Hz, 4H), 7.26 (d, J=8.0 Hz, 6H), 7.15 (t, J=8.0 Hz, 1H), 7.10 (d, J=8.0 Hz, 2H), 6.21 (s, 1H), 3.60~3.52 (m, 1H), 3.30 (dd, J=16.0 8.0 Hz, 2H), 3.11 (dd, J=16.0, 8.0 Hz, 2H), 2.41 (s, 6H), 1.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 198.7, 143.7, 139.0, 137.8, 134.6, 129.3, 128.9, 128.3, 127.9, 126.7, 126.1, 42.7, 41.8, 21.6, 15.2; IR (KBr) ν: 3026, 2953, 1678, 1607, 1572, 1533, 1491, 1352, 980; HRMS calcd for C28H28NaO2 [M+Na]+ 419.1982, found 419.1977.
(E)-3-(1-苯基-2-丙烯基)-1, 5-二(4-氯苯基)-1, 5-戊二酮(4n):无色油状物, 产率77%. 1H NMR (400 MHz, CDCl3) δ: 7.45 (d, J=8.0 Hz, 2H), 7.38 (q, J=8.0 Hz, 4H), 7.29 (dd, J=16.0, 8.0 Hz, 4H), 7.18 (t, J=8.0 Hz, 1H), 7.11 (d, J=8.0 Hz, 2H), 6.24 (s, 1H), 3.50~3.41 (m, 1H), 3.28 (dd, J=16.0, 8.0 Hz, 2H), 3.19 (dd, J=16.0, 8.0 Hz, 2H), 1.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 201.7, 139.3, 138.1, 137.6, 131.7, 130.8, 130.5, 129.1, 128.8, 127.9, 127.4, 126.9, 126.2, 46.5, 41.3, 15.2; IR (KBr) ν: 3022, 2953, 1695, 1589, 1491, 1433, 1352, 986; HRMS calcd for C26H22Cl2NaO2 [M+Na]+ 459.0889, found 459.0887.
(E)-1, 5-二苯基-3-(1-呋喃-2-丙烯基)-1, 5-戊二酮(4o):黄色油状物, 产率63%. 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.0 Hz, 4H), 7.57 (t, J=8.0 Hz, 2H), 7.47 (t, J=8.0 Hz, 4H), 7.31 (s, 1H), 6.35 (s, 1H), 6.17 (s, 1H), 6.09 (s, 1H), 3.62~3.52 (m, 1H), 3.31 (dd, J=16.0, 8.0 Hz, 2H), 3.15 (dd, J=16.0, 8.0 Hz, 2H), 2.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 198.8, 152.9, 140.9, 138.1, 136.9, 133.1, 128.6, 128.2, 115.5, 111.0, 108.6, 42.6, 41.4, 16.3; IR (KBr) ν: 3028, 2916, 1682, 1597, 1533, 1448, 1406, 1350, 1211, 984; HRMS calcd for C24H22NaO3 [M+Na]+ 381.1461, found 381.1458.
辅助材料(Supporting Information) 合成化合物的NMR谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
Tigineh, G. T.; Wen, Y.-S.; Liu, L.-K. Tetrahedron 2015, 71, 170. doi: 10.1016/j.tet.2014.10.074
马欣, 范为正, 李晓明, 姚莹, 张兆国, 化学进展, 2010, 22, 1310.Ma, X.; Fan, W.-Z.; Li, X.-M.; Yao, Y.; Zhang, Z.-G. Prog. Chem. 2010, 22, 1310 (in Chinese).
Abedini-Torghabeh, J.; Eshghi, H.; Bakavoli, M.; Rahimizadeh, M. Res. Chem. Intermed. 2015, 41, 3649. doi: 10.1007/s11164-013-1478-4
Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. doi: 10.1021/cr940089p
余富朝, 严胜骄, 林军, 有机化学, 2010, 10, 1421. http://sioc-journal.cn/Jwk_yjhx/CN/abstract/abstract339329.shtmlYu, F.-C.; Yan, S.-J.; Lin, J. Chin. J. Org. Chem. 2010, 10, 1421 (in Chinese). http://sioc-journal.cn/Jwk_yjhx/CN/abstract/abstract339329.shtml
Potts, K. T.; Cipullo, M. J.; Ralli, P.; Theodoridis, G. J. Am. Chem. Soc. 1981, 103, 3585. doi: 10.1021/ja00402a062
Yehia, N. A. M.; Polborn, K.; Müller, T. J. J. Tetrahedron Lett. 2002, 43, 6907. doi: 10.1016/S0040-4039(02)01615-5
Thalji, R. K.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 16778. doi: 10.1021/ja054085l
Harrowven, D. C.; Hannam, J. C. Tetrahedron Lett. 1998, 39, 9573. doi: 10.1016/S0040-4039(98)02128-5
Harrowven, D. C.; Hannam, J. C. Tetrahedron 1999, 55, 9333. doi: 10.1016/S0040-4020(99)00495-0
张志明, 夏宗芗, 蔡祖恽, 王颖, 化学学报, 1986, 44, 325.Zhang, Z.-M.; Xia, Z.-X.; Cai, Z.-Y.; Wang, Y. Acta Chim. Sinica 1986, 44, 325 (in Chinese)
Liu, W.-Y.; Xu, Q.-H.; Liang, Y.-M.; Chen, B.-H.; Liu, W.-M.; Ma, Y.-X. J. Organomet. Chem. 2001, 637~639, 719.
饶寅, 刘美林, 殷国栋, 有机化学, 2015, 35, 719. doi: 10.6023/cjoc201408032Rao, Y.; Liu, M.-L.; Yin, G.-D. Chin. J. Org. Chem. 2015, 35, 719 (in Chinese). doi: 10.6023/cjoc201408032
Miura, K.; Tojino, M.; Fujisawa, N.; Hosomi, A.; Ryu, I. Angew. Chem. 2004, 116, 2477. doi: 10.1002/(ISSN)1521-3757
梁英, 柯少勇, 王开梅, 杨自文, 有机化学, 2010, 30, 1801. http://sioc-journal.cn/Jwk_yjhx/CN/abstract/abstract339481.shtmlLiang, Y.; Ke, S.-Y.; Wang, K.-M.; Yang, Z.-W. Chin. J. Org. Chem. 2010, 30, 1801 (in Chinese). http://sioc-journal.cn/Jwk_yjhx/CN/abstract/abstract339481.shtml
Trost, B. M.; Brown, R. E.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 5877. doi: 10.1021/ja000314m
Trost, B. M.; Portnoy, M.; Kurihara, H. J. Am. Chem. Soc. 1997, 119, 836. doi: 10.1021/ja963460u
Piccialli, V.; D'Errico, S.; Borbone, N.; Oliviero, G.; Centore, R.; Zaccaria, S. Eur. J. Org. Chem. 2013, 1781.
Wang, Z.; Yin, G.; Qin, J.; Gao, M.; Cao, L.; Wu, A. Synthesis 2008, 3565.
Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498. doi: 10.1021/ja072134j
Shi, W.; Wang, J.-X. Synthesis 2009, 597.
Zhang, Y.-M.; Jia, X.-F.; Wang, J.-X. Eur. J. Org. Chem. 2009, 18, 2983.
王进贤, 安宁, 西北师范大学学报(自然科学版), 2011, 47, 59.Wang, J.-X.; An, N. J. Northwest Normal Univ.(Nat. Sci.) 2011, 47, 59 (in Chinese).
Zhan, H, -W.; Wang, J.-X. Chin. Chem. Lett. 2008, 10, 1183.
Pinto, D. C. G. A.; Silva, A. M. S.; Levai, A.; Cavaleiro, J. A. S.; Patonay, J.; Elguero, J. Eur. J. Org. Chem. 2000, 2593.
Xin, Y.; Zang, Z. H.; Chen, F. L. Synth. Commun. 2009, 39, 4062. doi: 10.1080/00397910902883686
Liu, W.; Shi, H. M.; Jin, H.; Zhao, H. Y.; Zhou, G. P.; Wen, F.; Hou, T. P. Chem. Biol. Drug Des. 2009, 73, 661. doi: 10.1111/jpp.2009.73.issue-6
Merz, K. W.; Barchet, R. Arch. Pharm. 1964, 297, 423. doi: 10.1002/(ISSN)1521-4184
Santos, C. M. M.; Silva, A. M. S.; Cavaleiro, J. A. S.; Lévai, A.; Patonay, T. Eur. J. Org. Chem. 2007, 2877.
Lavrushina, O. V.; Pivnenko, N. S.; Pedchenko, N. F.; Lavrushin, V. F. Zh. Org. Khim. 1976, 12, 2575.
Soga, T.; Takenoshita, H.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1990, 63, 3122. doi: 10.1246/bcsj.63.3122
表 1 反应条件的优化a
Table 1. Optimization of reaction conditions
![]() | |||||
| Entry | Molar ratio of 1a:2a:base | Base | Time/min | Yieldb/% | |
| 3a | 4a | ||||
| 1 | 2:1:1 | NaOH | 10 | 53 | 5 |
| 2 | 1:1:1 | NaOH | 10 | 67 | 4 |
| 3 | 1:1.5:1.5 | NaOH | 10 | 52 | 11 |
| 4 | 1:2:2 | NaOH | 10 | 17 | 39 |
| 5 | 1:3:3 | NaOH | 10 | 7 | 43 |
| 6 | 1:1:1 | NaOH | 5 | 74 | Trace |
| 7 | 1:1:1 | NaOH | 7 | 71 | Trace |
| 8 | 1:1:1 | KOH | 5 | 68 | Trace |
| 9 | 1:1:1 | K2CO3 | 5 | 0 | 0 |
| 10 | 1:1:1 | NaOCH3 | 5 | 57 | Trace |
| 11 | 1:1:1 | NEt3 | 5 | 0 | 0 |
| 12 | 1:1:1 | LiOH | 5 | 0 | 0 |
| 13c | 1:1:1 | NaOH | 5 | 42 | Trace |
| 14d | 1:1:1 | NaOH | 5 | 38 | 9 |
| 15 | 1:2:2 | NaOH | 5 | 45 | 22 |
| 16 | 1:2.5:2.5 | NaOH | 5 | 40 | 26 |
| 17 | 1:3:3 | NaOH | 5 | 25 | 39 |
| 18 | 1:3:3 | NaOH | 10 | 10 | 45 |
| 19 | 1:3:3 | NaOH | 15 | Trace | 67 |
| 20 | 1:3:3 | NaOH | 20 | Trace | 50 |
| 21 | 1:3:3 | KOH | 15 | Trace | 40 |
| 22 | 1:3:3 | NaOCH3 | 15 | 27 | 29 |
| 23 | 1:3:3 | LiOH | 15 | 0 | 0 |
| 24 | 1:3:3 | K2CO3 | 15 | 0 | 0 |
| 25 | 1:3:3 | NEt3 | 15 | 0 | 0 |
| 26 | 1:3:3 | DBU | 15 | Trace | 62 |
| 27d | 1:3:3 | NaOH | 15 | Trace | 51 |
| 28e | 1:3:3 | NaOH | 60 | Trace | Trace |
| a反应条件:肉桂醛1a(1 mmol), 苯乙酮2a和碱在空气中室温下研磨, TLC检测反应; b分离产率; c 0 ℃; d 40 ℃; e溶剂为乙醇(5 mL). | |||||
表 2 不同的醛和酮无溶剂研磨法快速合成3a
Table 2. A grinding-induced solvent-free preparation of 3 via different aldehydes and ketones
![]() | ||||||
| Entry | R1 | R2 | R3 | 3 | Time/min | Yieldb/% |
| 1 | C6H5 | H | C6H5 | 3a | 5 | 74 |
| 2 | C6H5 | H | 2-ClC6H4 | 3b | 4 | 86 |
| 3 | C6H5 | H | 3-BrC6H4 | 3c | 5 | 82 |
| 4 | C6H5 | H | 4-BrC6H4 | 3d | 6 | 76 |
| 5 | C6H5 | H | 4-CH3C6H4 | 3e | 4 | 70 |
| 6 | C6H5 | H | 2-(5-CH3C4H2O) | 3f | 5 | 73 |
| 7 | C6H5 | H | 3-C5H4N | 3g | 6 | 70 |
| 8 | C6H5 | H | 3-[2, 5-(CH3)2C4HS] | 3h | 7 | 76 |
| 9 | 4-CH3OC6H4 | H | C6H5 | 3i | 4 | 88 |
| 10 | 4-CH3OC6H4 | H | 4-CH3C6H4 | 3j | 6 | 84 |
| 11 | C6H5 | CH3 | C6H5 | 3k | 6 | 83 |
| 12 | C6H5 | Br | C6H5 | 3l | 4 | 79 |
| 13 | 2-C4H3O | CH3 | C6H5 | 3m | 5 | 84 |
| a反应条件: α, β-不饱和醛1(1 mmol)、酮2(1 mmol)、氢氧化钠(1 mmol)在空气中无溶剂研磨. b分离产率. | ||||||
表 3 不同的醛和酮无溶剂研磨法快速合成4a
Table 3. A grinding-induced solvent-free preparation of 4via different aldehydes and ketones
![]() | |||||||
| Entry | R1 | R2 | R3 | 4 | Time/min | Yieldb/% | 4:3c |
| 1 | C6H5 | H | C6H5 | 4a | 15 | 67 | 92:8 |
| 2 | C6H5 | H | 3-BrC6H4 | 4b | 15 | 71 | 94:6 |
| 3 | C6H5 | H | 2-ClC6H4 | 4c | 15 | 75 | 72:28 |
| 4 | C6H5 | H | 4-CH3C6H4 | 4d | 15 | 56 | 87:13 |
| 5 | C6H5 | H | 3-C5H4N | 4e | 17 | 50 | 60:40 |
| 6 | C6H5 | H | 2-(5-CH3C4H2O) | 4f | 16 | 54 | 60:40 |
| 7 | C6H5 | H | 3-[2, 5-(CH3)2C4HS] | 4g | 16 | 46 | 58:42 |
| 8 | 4-CH3OC6H4 | H | C6H5 | 4h | 16 | 62 | 96:4 |
| 9 | 4-CH3OC6H4 | H | 3-BrC6H4 | 4i | 15 | 54 | 95:5 |
| 10 | 4-CH3OC6H4 | H | 3-C5H4N | 4j | 17 | 51 | 92:8 |
| 11 | 4-CH3OC6H4 | H | 4-CH3C6H4 | 4k | 18 | 57 | 92:8 |
| 12 | C6H5 | CH3 | C6H5 | 4l | 15 | 66 | 72:28 |
| 13 | C6H5 | CH3 | 4-CH3C6H4 | 4m | 16 | 51 | 86:14 |
| 14 | C6H5 | CH3 | 2-ClC6H4 | 4n | 15 | 77 | 87:13 |
| 15 | 2-C4H3O | CH3 | C6H5 | 4o | 16 | 63 | 81:19 |
| a反应条件: α, β-不饱和醛1(1 mmol)、酮2(3 mmol)、氢氧化钠(3 mmol)在空气中无溶剂研磨. b分离产率. c根据粗1H NMR计算. | |||||||
扫一扫看文章