Citation: Ma Mengtao, Wang Weifan, Yao Weiwei. Synthesis of Magnesium(I) Complexes and Their Applications[J]. Chinese Journal of Organic Chemistry, ;2015, 36(1): 72-82. doi: 10.6023/cjoc201507015 shu

Synthesis of Magnesium(I) Complexes and Their Applications

  • Corresponding author: Ma Mengtao, mengtao@njfu.edu.cn Yao Weiwei, yww0715@hotmail.com
  • Received Date: 16 July 2015
    Revised Date: 12 September 2015

    Fund Project: the National Natural Science Foundation of China 21372117the Natural Science Foundation of Jiangsu Province BK20130952the Natural Science Foundation of Jiangsu Province BK20141468

Figures(13)

  • The valence of the alkaline-earth metals (group 2 metals) usually is 0 and +2. In 2007, the first room temperature stable magnesium(I) complexes were synthesized. Subsequently a series of different organic ligands stablized Mg(I) complexes have been prepared. They can be used as hydrocarbon soluble, stoichiometric, selective, and safe reducing agents in organic and inorganic reactions to replace some traditional reductants. In this review the synthesis of room temperature stable magnesium(I) complexes and their applications in organic and inorganic chemistry are briefly introduced.
  • 加载中
    1. [1]

      Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145, 1305.  doi: 10.1126/science.145.3638.1305

    2. [2]

      Resa, I.; Carmona, E.; Gutierrez-P, E.; Monge, A. Science 2004, 305, 1136.  doi: 10.1126/science.1101356

    3. [3]

      Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science2005, 310, 844.  doi: 10.1126/science.1116789

    4. [4]

      Fischer, R. C.; Power, P. P. Chem. Rev. 2010, 110, 3877.  doi: 10.1021/cr100133q

    5. [5]

      Power, P. P. Organometallics2007, 26, 4362.  doi: 10.1021/om700365p

    6. [6]

      Rivard, E.; Power, P. P. Inorg. Chem. 2007, 46, 10047.  doi: 10.1021/ic700813h

    7. [7]

      Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.  doi: 10.1021/ja993346m

    8. [8]

      Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785.  doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Sekiguchi, A.; Kinjo, K.; Ichinohe, M. Science 2004, 305, 1755.  doi: 10.1126/science.1102209

    10. [10]

      Wiberg, N.; Niedermayer, W.; Fischer, G.; Noth, H.; Suter, M. Eur. J. Inorg. Chem. 2002, 5, 1066.

    11. [11]

      Wang, X.; Andrews, L. J. Phys. Chem. A 2004, 108, 11511.  doi: 10.1021/jp046410h

    12. [12]

      Tague, T. J.; Andrews, L. J. Phys. Chem. 1994, 98, 8611.  doi: 10.1021/j100086a004

    13. [13]

      Green, S. P.; Jones, C.; Stasch, A. Science2007, 318, 1754.  doi: 10.1126/science.1150856

    14. [14]

      Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. Chem. Eur. J. 2010, 16, 938.  doi: 10.1002/chem.200902425

    15. [15]

      Stasch, A.; Jones, C. Dalton. Trans. 2011, 40, 5659.  doi: 10.1039/c0dt01831g

    16. [16]

      Jones, C.; Stasch, A. Top. Organomet. Chem. 2013, 45, 73.

    17. [17]

      Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, E.; Gutierrez-P, E.; Monge, A.; Galindo, A.; Del, R. D.; Andersen, R. A. J. Am. Chem. Soc. 2007, 129, 693.  doi: 10.1021/ja0668217

    18. [18]

      Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E. Coord. Chem. Rev. 2008, 252, 1532.  doi: 10.1016/j.ccr.2008.01.014

    19. [19]

      Li, T.; Schulz, S.; Roesky, P. W. Chem. Soc. Rev. 2012, 41, 3759.  doi: 10.1039/c2cs15343b

    20. [20]

      Yang, X.; Yu, J.; Liu, Y.; Xie, Y.; Schaefer, H. F.; Linag, Y.; Wu, B. Chem. Commun. 2007, 43, 2363.

    21. [21]

      Yu, J.; Yang, X.; Liu, Y.; Pu, Z.; Li, Q.; Xie, Y.; Schaefer, H. F.; Wu, B. Organometallics 2008, 27, 5800.  doi: 10.1021/om800405m

    22. [22]

      Yang, P.; Yang, X.; Yu, J.; Liu, Y.; Zhang, C.; Deng, Y.; Wu, B. Dalton. Trans. 2009, 38, 5773.

    23. [23]

      Liu, Y.; Li, S.; Yang, X.; Yang, P.; Gao, J.; Xia, Y.; Wu, B. Organometallics 2009, 28, 5270.  doi: 10.1021/om900408a

    24. [24]

      Gao, J.; Li, S.; Zhao, Y.; Wu, B.; Yang, X. Organometallics 2012, 31, 2978.  doi: 10.1021/om200868j

    25. [25]

      Luehl, A.; Nayek, H. P.; Blechert, S.; Roesky, P. W. Chem. Commun. 2011, 47, 8280.  doi: 10.1039/c1cc12461g

    26. [26]

      Liu, Y.; Li, S.; Yang, X.; Yang, P.; Wu, B. J. Am. Chem. Soc. 2009, 131, 4210.  doi: 10.1021/ja900568c

    27. [27]

      Gao, J.; Liu, Y.; Zhao, Y.; Yang, X.; Sui, Y. Organometallics 2011, 30, 6071.  doi: 10.1021/om2003199

    28. [28]

      Stasch, A. Angew. Chem., Int. Ed. 2014, 53, 10200.  doi: 10.1002/anie.201404284

    29. [29]

      Kruczyński, T.; Pushkarevsky, N.; Henke, P.; Koeppe, R.; Baum, E.; Konchenko, S.; Pikies, J.; Schnoeckel, H. Angew. Chem., Int. Ed. 2012, 51, 9025.  doi: 10.1002/anie.201204997

    30. [30]

      Pankewitz, T.; Klopper, W.; Henke, P.; Schnoeckel, H. Eur. J. Inorg. Chem. 2008, 31, 4879.

    31. [31]

      Köppe, R.; Henke, P.; Schnöckel, H. Angew. Chem., Int. Ed. 2008, 47, 8740.  doi: 10.1002/anie.v47:45

    32. [32]

      Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int. Ed. 2009, 48, 7140.  doi: 10.1002/anie.v48:39

    33. [33]

      Kagan, H. B. Tetrahedron 2003, 59, 10351.  doi: 10.1016/j.tet.2003.09.101

    34. [34]

      Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.  doi: 10.1021/cr940053x

    35. [35]

      Power, P. P. Nature 2010, 463, 171.  doi: 10.1038/nature08634

    36. [36]

      Power, P. P. Acc. Chem. Res. 2011, 44, 627.  doi: 10.1021/ar2000875

    37. [37]

      Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354.  doi: 10.1021/cr100216y

    38. [38]

      Bonyhady, S. J.; Collis, D.; Frenking, G.; Holzmann, N.; Jones, C.; Stasch, A. Nat. Chem. 2010, 2, 865.  doi: 10.1038/nchem.762

    39. [39]

      Weng, X.; Andrews, L.; Tam, S.; DeRose, M. E.; Fajardo, M. E. J. Am. Chem. Soc. 2003, 125, 9218.  doi: 10.1021/ja0353560

    40. [40]

      Lalrempuia, R.; Stasch, A.; Jones, C. Chem. Sci. 2013, 4, 4383.  doi: 10.1039/c3sc52242c

    41. [41]

      Kefalidis, C. E.; Stasch, A.; Jones, C.; Maron, L. Chem. Commun. 2014, 50, 12318.  doi: 10.1039/C4CC04984E

    42. [42]

      Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F.; Schleyer, P. R.; Robinson, G. H. Science 2008, 321, 1069.  doi: 10.1126/science.1160768

    43. [43]

      Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 45, 5201.

    44. [44]

      Wolf, R.; Uhl, W. Angew. Chem., Int. Ed. 2009, 48, 6774.  doi: 10.1002/anie.v48:37

    45. [45]

      Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050.  doi: 10.1126/science.1162926

    46. [46]

      Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. Angew. Chem., Int. Ed. 2009, 48, 9701.  doi: 10.1002/anie.200905495

    47. [47]

      Jones, C.; Sidiropoulos, A.; Holzmann, N.; Frenking, G.; Stasch, A. Chem. Commun. 2012, 48, 9855.  doi: 10.1039/c2cc35228a

    48. [48]

      Green, S. P.; Jones, C.; Junk, P. C.; Lippert, K. A.; Stasch, A. Chem. Commun. 2006, 42, 3978.

    49. [49]

      Sen, S. S.; Jana, A.; Roesky, H. W.; Schulzke, C. Angew. Chem., Int. Ed. 2009, 48, 8536.  doi: 10.1002/anie.v48:45

    50. [50]

      Nagendran, S.; Sen, S. S.; Roesky, H. W.; Koley, D.; Grubmuller, H.; Pal, A.; Herbst-I, R. Organometallics 2008, 27, 5459.  doi: 10.1021/om800714f

    51. [51]

      Sen, S. S.; Khan, S.; Samuel, P. P.; Roesky, H. W. Chem. Sci. 2012, 3, 659.  doi: 10.1039/C1SC00757B

    52. [52]

      Jones, C.; Bonyhady, S. J.; Holzmann, N.; Frenking, G.; Stasch, A. Inorg. Chem. 2011, 50, 12315.  doi: 10.1021/ic200682p

    53. [53]

      Li, J.; Schenk, C.; Goedecke, C.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2011, 133, 18622.  doi: 10.1021/ja209215a

    54. [54]

      Hadlington, T. J.; Hermann, M.; Li, J.; Frenking, G.; Jones, C. Angew. Chem., Int. Ed. 2013, 52, 10119.

    55. [55]

      Hadlington, T. J.; Jones, C. Chem. Commun. 2014, 50, 2321.  doi: 10.1039/c3cc49651a

    56. [56]

      Hadlington, T. J.; Hermann, M.; Frenking, G.; Jones, C. J. Am. Chem. Soc. 2014, 36, 28.

    57. [57]

      Woodul, W. D.; Carter, E.; Muller, R.; Richards, A. F.; Stasch, A.; Kaupp, M.; Murphy, D. M.; Driess, M.; Jones, C. J. Am. Chem. Soc. 2011, 133, 10074.  doi: 10.1021/ja204344e

    58. [58]

      Choong, S. L.; Christian, S.; Stasch, A.; Dange, D.; Jones, C. Chem. Commun. 2012, 48, 2504.  doi: 10.1039/c2cc18086c

    59. [59]

      Asay, M.; Inoue, S.; Driess, M. Angew. Chem., Int. Ed. 2011, 50, 9589.  doi: 10.1002/anie.201104805

    60. [60]

      Rekken, B. D.; Thomas, M.; Fettinger, J. C.; Tuononen, H. M.; Power, P. P. J. Am. Chem. Soc. 2012, 134, 6504.  doi: 10.1021/ja301091v

    61. [61]

      Fohlmeister, L.; Liu, S.; Schulten, C.; Moubaraki, B.; Stasch, A.; Cashion, J. D.; Murray, K. S.; Gagliardi, L.; Jones, C. Angew. Chem., Int. Ed. 2012, 51, 8294.  doi: 10.1002/anie.v51.33

    62. [62]

      Hicks, J.; Hoyer, C. E.; Moubaraki, B.; Manni, G. L.; Carter, E.; Murphy, D. M.; Murray, K. S.; Gagliardi, L.; Jones, C. J. Am. Chem. Soc. 2014, 136, 5283.  doi: 10.1021/ja5021348

    63. [63]

      Braunschweig, H.; Damme, A.; Dewhurst, R. D.; Vargas, A. Nat. Chem. 2013, 5, 115.

    64. [64]

      Hupp, F.; Mengtao, M.; Kroll, F.; Jimenez-H, J. O. C.; Dewhurst, R. D.; Radacki, K.; Stasch, A.; Jones, C.; Braunschweig, H. Chem. Eur. J. 2014, 20, 16888.  doi: 10.1002/chem.201404342

    65. [65]

      Jones, C.; Bonyhady, S. J.; Nembenna, S.; Stasch, A. Chem. Eur. J. 2012, 2012, 2596.

    66. [66]

      Rappoport, Z.; Marek, I. The Chemistry of Organomagnesium Compounds, Part 1, Chichester, Wiley, 2008.

    67. [67]

      Richey, H. G. Jr. Grignard Reagents, New Developments, Chichester, Wiley, 2000.

    68. [68]

      Rausch, M. D.; McEwen, W. E.; Kleinberg, J. Chem. Rev. 1957, 57, 417.  doi: 10.1021/cr50015a001

    69. [69]

      Bonyhady, S. J.; Green, S. P.; Jones, C.; Nembenna, S.; Stasch, A. Angew. Chem., Int. Ed. 2009, 48, 2973.  doi: 10.1002/anie.200900331

    70. [70]

      Mengtao, M.; Stasch, A.; Jones, C. Chem. Eur. J. 2012, 18, 10669.  doi: 10.1002/chem.v18.34

    71. [71]

      Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.  doi: 10.1002/anie.v47:47

    72. [72]

      Jones, C.; McDyre, L.; Murphy, D. M.; Stasch, A. Chem. Commun. 2010, 46, 1511.  doi: 10.1039/B922002J

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(0)
  • Abstract views(2135)
  • HTML views(493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return