Citation: Zhang Yu, Wang Shixing, Yang Rui, Dai Tengyuan, Zhang Nan, Xi Pinxian, Yan Chun-Hua. Construction of Co9S8/MoS2 Heterostructures for Enhancing Electrocatalytic Hydrogen Evolution Reaction[J]. Acta Chimica Sinica, ;2020, 78(12): 1455-1460. doi: 10.6023/A20070332 shu

Construction of Co9S8/MoS2 Heterostructures for Enhancing Electrocatalytic Hydrogen Evolution Reaction

  • Corresponding author: Xi Pinxian, xipx@lzu.edu.cn
  • Received Date: 29 July 2020
    Available Online: 13 October 2020

    Fund Project: the National Natural Science Foundation of China 21931001the lnnovation Platform of Rare-earth Funcional Maeri.als of Gansu Province 2019ZX-04the National Natural Science Foundation of China 21922105Project supported by the National Natural Science Foundation of China(Nos.21931001, 21922105), the lnnovation Platform of Rare-earth Funcional Maeri.als of Gansu Province (No.2019ZX-04) and the 111 Project (No.B20027)the 111 Project B20027

Figures(5)

  • The large-scale use of coal, oil, and natural gas will cause environmental pollution and resource shortages, which is incompatible with the sustainable development. Therefore, it is essential to the development of renewable energy. H2 has a high heat of combustion, and it's combustion products do not include greenhouse gases, so it is considered as an ideal clean energy carrier. Industrial hydrogen production methods will bring CO2 inevitably. As an emerging energy conversion device, hydrogen produced by water splitting has simple equipment and little pollution, making it the first choice for clean energy in the future. Generally, the adsorption energy of hydrogen on the surface of precious metal catalysts is close to zero, and its hydrogen evolution reaction (HER) performance is the most prominent. Pt is an excellent HER catalyst. Commercial Pt/C has high alkaline HER performance, but its higher cost, material instability and resource scarcity limit its widespread applications. Therefore, this research is devoted to the development of high-activity, low-cost transition metal catalysts for HER by water splitting. Firstly, CoMoO4 nanorods were synthesized by hydrothermal method. Then, using the precursor morphology oriented strategy method, the activated Co9S8/MoS2 heterostructure catalyst was successfully prepared by sulfurating CoMoO4 into CoS2/MoS2 and further, calcining CoS2/MoS2 nanorod in hydrogen atmosphere. X-rays diffraction (XRD), transmission electron microscopy (TEM), electron spin resonance (ESR), Raman spectra, X-ray photoelectron spectra (XPS) and synchrotron-based X-ray absorption fine structure (XAFS) characterizations exhibit that the Co coordination mode change from octahedron in CoS2 to tetrahedron in Co9S8, leading to the activation of inert basal plane in MoS2. Owing to this activation, the interlayer spacing of MoS2 is reduced and thus generate abundant defects. Meanwhile, the increased electrochemical surface area (ECSA) and roughness of the catalysts are more conducive to the adsorption of H*. The test of the contact angle data show that the electrode has good hydrophilicity, which can facilitate the penetration of electrolyte and diffusion of gas molecules quickly. When the current density is at 10 mA·cm-2 in 1 mol·L-1 KOH solution, an overpotential of 84 mV and a Tafel slope of 93 mV·dec-1 can be achieved. Due to the strong interaction between different components of the heterostructures, the nanorods possess good structural stability in alkaline solutions. This work highlights the vital role of the sulfides heterostructure construction in HER, opening a new way to advanced alkaline HER catalysts.
  • 加载中
    1. [1]

      Wang, Y.; Zhang, L. M.; Hu, T. J. Acta Chim. Sinica 2015, 73, 316(in Chinese).

    2. [2]

      Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nat. Commun. 2019, 10, 5335.

    3. [3]

      Chen, F.; Chen, H.; Wu, Q.; Luo, S. Chin. J. Org. Chem 2020, 40, 339(in Chinese).

    4. [4]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113(in Chinese).

    5. [5]

      Song, F. Y.; Ding, Y.; Zhao, C. C. Acta Chim. Sinica 2014, 72, 133(in Chinese).

    6. [6]

      Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic. N.; Kota, S. S.; Chang, K.-C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nat. Mater. 2016, 15, 197.

    7. [7]

      Liu, W.-Q.; Yang, X.-L.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861(in Chinese).

    8. [8]

      Dong, K.; Liu, Q.; Wu, L.-Z. Acta Chim. Sinica 2020, 78, 299(in Chinese).

    9. [9]

      Zhang, X.-L.; Hu, S.-J.; Zheng, Y.-R.; Wu, R.; Gao, F.-Y.; Yang, P.-P.; Niu, Z.-Z.; Gu, C.; Yu, X. X.; Zheng, X.-S.; Ma, C.; Zheng, X.; Zhu, J.-F.; Gao, M.-R.; Yu, S.-H. Nat. Commun. 2019, 10, 5338.

    10. [10]

      Podjaski, F.; Weber, D.; Zhang, S. Y.; Diehl, L.; Eger, R.; Duppel, V.; Alarcón-Lladó, E.; Richter, G.; Haase, F.; Morral, A. F. i.; Scheu, C.; Lotsch, B. V. Nat. Catal. 2019, 3, 55.

    11. [11]

      Men, Y. N.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. ACS Catal. 2019, 9, 3744.

    12. [12]

      Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H.; Ma, J. Y.; Gong, Y.; Lv, F.; Wang, K.; Huang, H. H.; Zhang, W.; Guo, S. J.; Zheng, W. T.; Liu, P. Nat. Commun. 2019, 10, 5231.

    13. [13]

      Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X. L. Nat. Mater. 2016, 15, 48.

    14. [14]

      Li, G. Q.; Chen, Z. H.; Li, Y. F.; Zhang, D.; Yang, W. T.; Liu, Y. Y.; Cao, L. Y. ACS Nano 2020, 14, 1707.

    15. [15]

      Lu, Q.; Yu, J.; Zou, X. H.; Liao, K. M.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. P. Adv. Funct. Mater. 2019, 29, 1904481.

    16. [16]

      Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X.-Y.; Lou, X. W. Nat. Commun. 2015, 6, 6512.

    17. [17]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805.

    18. [18]

      Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; Chen, J.; Wang, J. Z.; Minett, A. I.; Nicolosi, V.; Coleman, J. N. Adv. Mater. 2011, 23, 3944.

    19. [19]

      Xiong, Q. Z.; Wang, Y.; Liu, P.-F.; Zheng, L.-R.; Wang, G. Z.; Yang, H.-G.; Wong, P.-K.; Zhang, H. M.; Zhao, H. J. Adv. Mater. 2018, 30, 1801450.

    20. [20]

      Shi, Y.; Zhou, Y.; Yang, D.-R.; Xu, W.-X.; Wang, C.; Wang, F.-B.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. J. Am. Chem. Soc. 2017, 139, 15479.

    21. [21]

      Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Adv. Mater. 2013, 25, 5807.

    22. [22]

      Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D.; Sun, Z. H.; Wei, S. Q. J. Am. Chem. Soc. 2015, 137, 2622.

    23. [23]

      Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubsky, D.; Pumera, M. Chem. Commun. 2017, 53, 3054.

    24. [24]

      Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Adv. Energy Mater. 2018, 8, 1801345.

    25. [25]

      Chen, Y. P.; Wang, X. Y.; Lao, M. M.; Rui, K.; Zheng, X. B.; Yu, H. B.; Ma, J.; Dou, S. X.; Sun, W. P. Nano Energy 2019, 64, 103918.

    26. [26]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296.

    27. [27]

      Uddin, N.; Zhang, H. Y.; Du, Y. P.; Jia, G. H.; Wang, S. B.; Yin, Z. Y. Adv. Mater. 2020, 32, 1905739.

    28. [28]

      Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308.

    29. [29]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.

    30. [30]

      Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X.; Guo, S. J. Adv. Mater. 2017, 29, 1704681.

    31. [31]

      An, L.; Li, Y. X.; Luo, M. C.; Yin, J.; Zhao, Y.-Q.; Xu, C. L.; Cheng, F. Y.; Yang, Y.; Xi, P. X.; Guo, S. J. Adv. Funct. Mater. 2017, 27, 1703779.

    32. [32]

      Yin, J.; Li, Y. X.; Lv, F.; Fan, Q. H.; Zhao, Y.-Q.; Zhang, Q. L.; Wang, W.; Cheng, F. Y.; Xi, P. X.; Guo, S. J. ACS Nano 2017, 11, 2275.

    33. [33]

      Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Adv. Funct. Mater. 2018, 28, 1807086.

    34. [34]

      Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H.; Bao, X. H. Nat. Commun. 2017, 8, 14430.

    35. [35]

      Yang, R.; An, L.; Zhang, Y.; Zhang, N.; Dai, T. Y.; Xi, P. X. ChemCatChem 2019, 11, 6002.

    36. [36]

      Cai, Z.; Li, L. D.; Zhang, Y. W.; Zhao, Y.; Yang, J.; Guo. Y. J.; Guo, L. Angew. Chem. Int. Ed. 2019, 58, 4189.

    37. [37]

      Bai, J. M.; Meng, T.; Guo, D. L.; Wang, S. G.; Mao, B. G.; Cao, M. H. ACS Appl. Mater. Interfaces 2018, 10, 1678.

  • 加载中
    1. [1]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    2. [2]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    12. [12]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    18. [18]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(65)
  • Abstract views(5176)
  • HTML views(1025)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return