Citation: Zhu Congtan, Yang Ying, Zhao Beikai, Lin Feiyu, Luo Yuan, Ma Shupeng, Zhu Liu, Guo Xueyi. Electrochemical Synthesis of PEDOT and Its Application in Solid-State Dye-sensitized Solar Cells[J]. Acta Chimica Sinica, ;2020, 78(10): 1102-1110. doi: 10.6023/A20060275 shu

Electrochemical Synthesis of PEDOT and Its Application in Solid-State Dye-sensitized Solar Cells

  • Corresponding author: Yang Ying, muyicaoyang@csu.edu.cn
  • Received Date: 29 June 2020
    Available Online: 26 August 2020

    Fund Project: Qingyuan Innovation and Entrepreneurship Research Team Project 2018001The National Natural Science Foundation of China 61774169Project supported by the National Natural Science Foundation of China (No. 61774169) and Qingyuan Innovation and Entrepreneurship Research Team Project (No. 2018001)

Figures(5)

  • In this paper, the synthesis of poly(3, 4-ethylenedioxythiophene) (PEDOT) by cyclic voltammetry (CV) electrochemical deposition and its application in the counter electrode of solid-state dye-sensitized solar cells were studied. The influence of cycle times (10~50 times) on the morphology, thickness and optical properties of PEDOT films were explored by Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), scanning electron microscope (SEM) and ultraviolet-visible spectroscopy (UV-Vis). The photoelectrochemical properties of solid-state dye-sensitized solar cells based on PEDOT transparent counter electrode were characterized by J-V, electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent spectrum/photovoltage spectrum (IMPS/VS) and Tafel analysis. The results showed that an un-uniform film with the thickness of 0.5 μm and light transmittance of 80% was formed when CV cycle times was 10, where the PEDOT film was not completely covered on the substrate. When the CV cycles reached 30~40, a uniform and dense transparent film was obtained and the highest photoelectric conversion efficiency of the corresponding solid-state dye-sensitized solar cells reached 5.34%. This is because uniform and dense surface, good optical properties and high photo-electric catalysis properties (J0=2.51×10-3 A·cm-2) for I3- in the electrolyte, made the device obtain larger diffusion coefficient (Dn=28.80 μm2·ms-1) and carrier diffusion length (L=21.41 μm), which were favorable for charge transfer. When the number of CV cycles was further increased to 50 times, showing greater roughness, the PEDOT film was no longer growing uniformly. The PEDOT film deposited on the FTO surface underwent some dissolution and desorption, the PEDOT film became uneven, and the catalytic activity of PEDOT electrode to I3- in electrolyte was reduced. The device with PEDOT transparent counter electrode film deposited by cyclic voltammetry could also achieve double-side illumination with good catalytic activity to the electrolyte. Under the condition of double-side illumination, the photoelectric performance of the device using electrodeposited PEDOT as transparent counter electrode was improved by about 20%. The improvement of the photoelectric performance of the device is mainly due to the increase in the absorption of photons by the double-sided illumination.
  • 加载中
    1. [1]

      Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt. 2010, 18, 144.  doi: 10.1002/pip.974

    2. [2]

      Luque, A.; Martí, A. Sol. Energ. Mat. Sol. C 2010, 94, 287.  doi: 10.1016/j.solmat.2009.10.001

    3. [3]

      König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J. F.; Patterson, R.; Huang, L. M.; Green, M. A. Physica E 2010, 42, 2862.  doi: 10.1016/j.physe.2009.12.032

    4. [4]

      Davies, P. A.; Luque, A. Sol. Energ. Mat. Sol. C 1994, 33, 11.  doi: 10.1016/0927-0248(94)90284-4

    5. [5]

      Narayanaswamy, A.; Chen, G. Appl. Phys. Lett. 2003, 82, 3544.  doi: 10.1063/1.1575936

    6. [6]

      Coutts, T. J.; Fitzgerald, M. C. Phys. World 1998, 11, 49.

    7. [7]

      Bu, L.-L. M.S. Thesis, Huazhong University of Technology, Wuhan, 2016 (in Chinese).

    8. [8]

      Li, Q. H.; Wang, Y. M.; Li, W. J.; Zhang, T. T.; Cai, L.; Cheng, Z. X.; Li, H. Acta Optica Sin. 2012, 32, 152 (in Chinese).

    9. [9]

      Lan, Z.; Wu, J. H. Prog. Chem. 2010, 22, 2248 (in Chinese).

    10. [10]

      Pan, B.; Zhu, Y. Z.; Qiu, C. J.; Wang, B.; Zheng, J. Y. Acta Chim. Sinica 2018, 76, 215 (in Chinese).
       

    11. [11]

      Tian, Y. J.; Cai, N.; Chen, Y. T.; Qian, S. N.; Huo, Y. P. Chin. J. Org. Chem. 2018, 38, 1085 (in Chinese).

    12. [12]

      Wu, W. J.; Xin, C. H.; Pang, Z. H.; Xu, L.; Li, C. Acta Chim. Sinica 2019, 77, 545 (in Chinese).
       

    13. [13]

      Yuan, C. H.; Gao, X. Y.; Ma, J. F. Mater. Rev. 2017, 031, 223 (in Chinese).

    14. [14]

      Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. Prog. Photovolt. 2004, 12, 320.

    15. [15]

      Fortuin, S.; Stryi-Hipp, G. Solar Collectors, Non-concentrating. Solar Energy, Springer, New York, 2013, pp. 79~96.

    16. [16]

      Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho, W. H.; Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313.  doi: 10.1016/j.jpowsour.2008.11.075

    17. [17]

      Pringle, J. M.; Armel, V.; Macfarlane, D. R. Chem. Commun. 2010, 46, 5367.  doi: 10.1039/c0cc01400a

    18. [18]

      Lee, T. H.; Do, K.; Lee, Y. W.; Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S. J. Mater. Chem. 2012, 22, 21624.  doi: 10.1039/c2jm34807a

    19. [19]

      Xiao, Y.; Wu, J.; Yue, G.; Lin, J.; Huang, M.; Lan, Z.; Fan, L. Electrochim. Acta 2012, 85, 432.  doi: 10.1016/j.electacta.2012.08.077

    20. [20]

      Rajagopal, P.; Mathan, K. P.; Muthuraaman, B. RSC Adv. 2020, 10, 4521.  doi: 10.1039/C9RA09715E

    21. [21]

      Zhang, W. W.; Wu, Y. Z.; Bahang, H. W.; Cao, Y.; Yi, C.; Saygili, Y.; Luo, J.; Liu, Y.; Kavan, L.; Moser, J.-E.; Hagfeldt, A.; Tian, H.; Zakeeruddin, S. M.; Zhu, W. H.; Gra¨tzel, M. Energy Environ. Sci. 2018, 11, 1779.  doi: 10.1039/C8EE00661J

    22. [22]

      Jang, Y. J.; Thogiti, S.; Lee, K.; Kim, G. H. Crystals 2019, 9, 452.  doi: 10.3390/cryst9090452

    23. [23]

      Malinauskas, T.; Daiva, T.-L.; Rüdiger, S.; Maryte, D.; Robert, S.; Henrike, W.; Vygintas, J.; Ingmar, B.; Vytautas, G. ACS Appl. Mater. Inter. 2015, 7, 11107.  doi: 10.1021/am5090385

    24. [24]

      Zhang, T. M.S. Thesis, Jinan University, Guangzhou, 2015 (in Chinese).

    25. [25]

      Xie, Y.; Jiang, F. X.; Xu, J. K. J. Funct. Mater. 2009, 40, 1987 (in Chinese).

    26. [26]

      Li, X.-D. Ph.D. Dissertation, East China Normal University, Shanghai, 2011 (in Chinese).

    27. [27]

      Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N.; Zaidi, S.; Sopian, K. Inter. J. Photoenergy 2014, 2014, 1.

    28. [28]

      Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.  doi: 10.1016/j.jpowsour.2015.05.081

    29. [29]

      Cui, C. C.; Wang, M. J. Hefei Univ. Technol. Nat. Sci. Ed. 2012, 11, 1541 (in Chinese).

    30. [30]

      Lattach, Y.; Deniset-Besseau, A.; Guigner, J.-M.; Remit, S. Radiat. Physic. Chem. 2013, 82, 44.  doi: 10.1016/j.radphyschem.2012.09.009

    31. [31]

      Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.

    32. [32]

      Azimi, H.; Senes, A.; Scharber, M. C.; Hingerl, K.; Brabec, C. J. Adv. Energ. Mater. 2011, 1, 1162.  doi: 10.1002/aenm.201100331

    33. [33]

      Dkhissi, A.; Brocorens, P.; Lazzaroni, R. Chem. Phys. Lett. 2006, 432, 167.  doi: 10.1016/j.cplett.2006.10.015

    34. [34]

      Ohira, M.; Koizumi, Y.; Nishiyama, H.; Tomita, I.; Inagi, S. Polym. J. 2017, 49, 163.  doi: 10.1038/pj.2016.100

    35. [35]

      Ahmad, S.; Yum, J.-H.; Zhang, X.; Gratzel, M.; Butta, H.-J.; Nazeeruddin, M. K. J. Mater. Chem. 2010, 20, 1654.  doi: 10.1039/b920210b

    36. [36]

      Hong, C. K.; Ko, H. S.; Han, E. M.; Park, K. H. Int. J. Electrochem. Sci. 2015, 10, 5521.

    37. [37]

      Guo, X.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.  doi: 10.1016/j.mtener.2017.07.013

    38. [38]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    39. [39]

      Yang, Y.; Chen, T.; Pan, D. Q.; Zhang, Z.; Guo, X. Y. Acta Chim. Sinica 2018, 76, 681 (in Chinese).
       

    40. [40]

      Lagemaat, J. V. D.; Frank, A. J. J. Phys. Chem. B 2001, 105, 11194.  doi: 10.1021/jp0118468

    41. [41]

      Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Crit. Care Nurse 2004, 33, 17.

    42. [42]

      Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.  doi: 10.1021/nl062000o

    43. [43]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J.-H.; Zhou, C.-H.; Wang, Y.-W.; Guo, X.-Y.; Chu, P. K.; Yu, X.-F. Adv. Mater. 2016, 28, 8937.  doi: 10.1002/adma.201602382

    44. [44]

      Gao, J.; Yang, Y.; Yan, J.; Zhang, Z.; Pan, D.; Dai, Q.; Guo, X. J. Alloy. Compd. 2018, 764, 482.  doi: 10.1016/j.jallcom.2018.06.079

  • 加载中
    1. [1]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    11. [11]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    14. [14]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    16. [16]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(53)
  • Abstract views(4024)
  • HTML views(1718)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return