Citation: Zhao Li-Dong, Zuo Peng, Yin Bin-Cheng, Hong Chenglin, Ye Bang-Ce. A Cell Membrane-Anchored DNA Tetrahedral Sensor for Real-time Monitoring of Exosome Secretion[J]. Acta Chimica Sinica, ;2020, 78(10): 1076-1081. doi: 10.6023/A20060235 shu

A Cell Membrane-Anchored DNA Tetrahedral Sensor for Real-time Monitoring of Exosome Secretion

  • Corresponding author: Yin Bin-Cheng, binchengyin@ecust.edu.cn Hong Chenglin, hcl_tea@shzu.edu.cn Ye Bang-Ce, bcye@ecust.edu.cn
  • Received Date: 14 June 2020
    Available Online: 25 July 2020

    Fund Project: the National Natural Science Foundation of China 21822402Project supported by the National Natural Science Foundation of China (Nos. 21822402, 21675052, 31730004)the National Natural Science Foundation of China 21675052the National Natural Science Foundation of China 31730004

Figures(11)

  • Exosomes are nanoscale bilayer membrane vesicles actively secreted by cells, which carry abundant cell-specific substances. They can directly reflect the physiological and functional status of the secreting cells and play important roles in intercellular communication, physiological and pathological processes. In this work, we combined membrane modification technique with fluorescence imaging technique and blended CD63 aptamers into a highly stable and universal DNA tetrahedral structure to construct a cell membrane-anchored DNA sensor for real-time monitoring the secretion of exosomes. We designed four functional toes on each vertex of the tetrahedral sensor, respectively. A signal report toe on the top vertex consisted of fluorophore-modified CD63 aptamer, quencher-modified quencher probe(QP) binding part of the CD63 aptamer, and block probe (BP) binding the rest of the CD63 aptamer. The other three extended toes on the vertices were immobilized to the cell membrane by hybridizing with cholesterol-modified anchor probes(AP), which spontaneously incorporated to a lipid bilayer via hydrophobic interaction between the cholesterol moieties and the cellular membrane. In the initial state, the proposed DNA tetrahedral sensor was tethered to membrane with fluorophores quenched by QP and CD63 aptamer blocked by QP and BP. Trigger probes (TP) were add to bind to BP, resulting in the activation of the sensor. Subsequently, CD63 aptamers were specifically bound to the secreted exosomes, leading to the release of QP and concurrent fluorescence restoration of fluorophore. The intensity of the fluorescent signal in cell membrane was proportional to the amount of exosomes captured, thus realizing the real-time monitoring of the exosomes by analysis the changes of the fluorescence intensity. The experimental results showed that the sensor exhibited a good stability and a high capture efficiency for secreted exosomes. This strategy would provide a potentially useful tool for a variety of applications in biomedical research, drug discovery and tissue engineering.
  • 加载中
    1. [1]

      Kowal, J.; Tkach, M.; Théry, C. Curr. Opin. Cell Biol. 2014, 29, 116.  doi: 10.1016/j.ceb.2014.05.004

    2. [2]

      Shao, H.; Im, H.; Castro, C. M.; Breakefield, X.; Weissleder, R.; Lee, H. Chem. Rev. 2018, 118, 1917.  doi: 10.1021/acs.chemrev.7b00534

    3. [3]

      Record, M.; Subra, C.; Silventepoirot, S.; Poirot, M. Biochem. Pharmacol. 2011, 81, 1171.  doi: 10.1016/j.bcp.2011.02.011

    4. [4]

      Johnstone, R. M.; Adam, M.; Hammond, J. R.; Orr, L.; Turbide, C. J. Biol. Chem. 1987, 262, 9412.

    5. [5]

      Imjeti, N. S.; Menck, K.; Egea-Jimenez, A. L.; Lecointre, C.; Lembo, F.; Bouguenina, H.; Badache, A.; Ghossoub, R.; David, G.; Roche, S.; Zimmermann, P. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12495.  doi: 10.1073/pnas.1713433114

    6. [6]

      Gallego-Urrea, J. A.; Tuoriniemi, J.; Hassell v, M. TrAC, Trends Anal. Chem. 2011, 30, 473.  doi: 10.1016/j.trac.2011.01.005

    7. [7]

      Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I. T.; Shi, M.; Wu, Y.; Dong, Y.; Tan, W. ACS Nano. 2017, 11, 3943.  doi: 10.1021/acsnano.7b00373

    8. [8]

      Rupert, D. L.; L sser, C.; Eldh, M.; Block, S.; Zhdanov, V. P.; Lotvall, J. O.; Bally, M.; H k, F. Anal. Chem. 2014, 86, 5929.  doi: 10.1021/ac500931f

    9. [9]

      Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B. C. Anal. Chem. 2018, 90, 13451.  doi: 10.1021/acs.analchem.8b03272

    10. [10]

      Germain, M.; Balaguer, P.; Nicolas, J. C.; Lopez, F.; Esteve, J. P.; Sukhorukov, G. B.; Winterhalter, M.; Richard-Foy, H.; Fournier, D. Biosens. Bioelectron. 2006, 21, 1566.  doi: 10.1016/j.bios.2005.07.011

    11. [11]

      Teramura, Y.; Kaneda, Y.; Totani, T.; Iwata, H. Biomaterials. 2008, 29, 1345.  doi: 10.1016/j.biomaterials.2007.11.048

    12. [12]

      Kim, H.; Shin, K.; Park, O. K.; Choi, D.; Kim, H. D.; Baik, S.; Lee, S. H.; Kwon, S. H.; Yarema, K. J.; Hong, J.; Hyeon, T.; Hwang, N. S. J. Am. Chem. Soc. 2018, 140, 1199.  doi: 10.1021/jacs.7b08440

    13. [13]

      Chanana, M.; Gliozzi, A.; Diaspro, A.; Chodnevskaja, I.; Huewel, S.; Moskalenko, V.; Ulrichs, K.; Galla, H. J.; Krol, S. Nano Letters. 2005, 5, 2605.  doi: 10.1021/nl0521219

    14. [14]

      Zhou, W. -Y.; Yang, P. -T.; Yang, R. -H.; Zheng, J. J. Instrum. Anal. 2019, 038, 154 (in Chinese).

    15. [15]

      Chen, X.; Zhang, X.; Wang, H. Y.; Chen, Z.; Wu, F. G. Langmuir. 2016, 32, 10126.  doi: 10.1021/acs.langmuir.6b02288

    16. [16]

      Matsuda, M.; Hatanaka, W.; Takeo, M.; Kim, C. W.; Niidome, T.; Yamamoto, T.; Kishimura, A.; Mori, T.; Katayama, Y. Bioconjug. Chem. 2014, 25, 2134.  doi: 10.1021/bc500465j

    17. [17]

      Altman, M. O.; Chang, Y. M.; Xiong, X.; Tan, W. Sci. Rep. 2013, 3, 3343.  doi: 10.1038/srep03343

    18. [18]

      Qiu, L.; Wimmers, F.; Weiden, J.; Heus, H. A.; Tel, J.; Figdor, C. G. Chem. Commun. 2017, 53, 8066.  doi: 10.1039/C7CC03576D

    19. [19]

      Li, J.; Xun, K.; Pei, K.; Liu, X.; Peng, X.; Du, Y.; Qiu, L.; Tan, W. J. Am. Chem. Soc. 2019, 141, 18013.  doi: 10.1021/jacs.9b04725

    20. [20]

      Świtalska, A.; Anna, D.; Agnieszka, F. W.; Juskowiak, B. Sensors 2018, 18, 2201.  doi: 10.3390/s18072201

    21. [21]

      Zeng, S.; Liu, D.; Li, C.; Yu, F.; Fan, L.; Lei, C.; Huang, Y.; Nie, Z.; Yao, S. Anal. Chem. 2018, 90, 13459.  doi: 10.1021/acs.analchem.8b03299

    22. [22]

      Qiu, L.; Wimmers, F.; Weiden, J.; Heus, H. A.; Tel, J.; Figdor, C. G. Chem. Commun. 2017, 53, 8066.  doi: 10.1039/C7CC03576D

    23. [23]

      Yuan, J.; Deng, Z.; Liu, H.; Li, X.; Li, J.; He, Y.; Qing, Z.; Yang, Y.; Zhong, S. ACS Sens. 2019, 4, 1648.  doi: 10.1021/acssensors.9b00482

    24. [24]

      Goodman, R. P.; Berry, R. M.; Turberfield, A. J. Chem. Commun. 2004, 12, 1372.

    25. [25]

      Schlapak, R.; Danzberger, J.; Armitage, D.; Morgan, D.; Ebner, A.; Hinterdorfer, P.; Pollheimer, P.; Gruber, H. J.; Sch ffler, F.; Howorka, S. Small 2012, 8, 89.  doi: 10.1002/smll.201101576

    26. [26]

      Ye, D.-K.; Zuo, X.-L.; Fan, C.-H. Prog. Chem. 2017, 01, 36 (in Chinese).

    27. [27]

      Chen, X.; Zhou, G.; Song, Ping.; Wang, J.; Gao, J.; Lu, J.; Fan, C.; Zuo, X. Anal. Chem. 2014, 86, 7337.  doi: 10.1021/ac500054x

    28. [28]

      Zhu, F.-L.; Bian, X.-J.; Tian, R.; Li, L.; Yan, J.; Liu, G. Chin. J. Anal. Chem. 2020, 4, 473 (in Chinese).

    29. [29]

      He, L.; Lu, D.; Liang, H.; Xie, S.; Zhang, X.; Liu, Q.; Yuan, Q.; Tan, W. J. Am. Chem. Soc. 2018, 140, 258.  doi: 10.1021/jacs.7b09789

    30. [30]

      Conway, J. W.; Madwar, C.; Edwardson, T. G.; McLaughlin, C. K.; Fahkoury, J.; Lennox, R. B.; Sleiman, H. F. J. Am. Chem. Soc. 2014, 136, 12987.  doi: 10.1021/ja506095n

    31. [31]

      Lin, M.; Wang, J.; Zhou, G.; Wang, J.; Wu, N.; Lu, J.; Gao, J.; Chen, X.; Shi, J.; Zuo, X.; Fan, C. Angew. Chem. Int. Ed. 2015, 54, 2151.  doi: 10.1002/anie.201410720

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    3. [3]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Chen Hu Yu Wu Lianqing Chen Tao Huang Chunya Li Lin Li Bingguang Zhang Peng Mei . 基于“三位一体四融合”策略的化学实验室安全课程创新与探索. University Chemistry, 2025, 40(8): 25-32. doi: 10.12461/PKU.DXHX202410088

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    17. [17]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    18. [18]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(21)
  • Abstract views(2057)
  • HTML views(522)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return