Citation: Hou Bin, Li Jing, Xin Hanshen, Yang Xiaodi, Gao Honglei, Peng Peizhen, Gao Xike. Design, Synthesis and Field Effect Characteristics of Diazulene Diimides Bridged by Aromatic Group[J]. Acta Chimica Sinica, ;2020, 78(8): 788-796. doi: 10.6023/A20050161 shu

Design, Synthesis and Field Effect Characteristics of Diazulene Diimides Bridged by Aromatic Group

  • Corresponding author: Yang Xiaodi, yangxiaodi@shutcm.edu.cn; gaoxk@mail.sioc.ac.cn Gao Honglei, gaoxk@mail.sioc.ac.cn
  • Received Date: 11 May 2020
    Available Online: 10 June 2020

    Fund Project: the Science and Technology Commission of Shanghai Municipality 18JC1410600the Science and Technology Commission of Shanghai Municipality 19XD1424700Project supported by the National Natural Science Foundation of China (Nos. 21522209, 21790362) and the Science and Technology Commission of Shanghai Municipality (Nos. 19XD1424700, 18JC1410600)the National Natural Science Foundation of China 21790362the National Natural Science Foundation of China 21522209

Figures(6)

  • Azulene, a bicyclic nonbenzenoid aromatic hydrocarbon, shows completely different physicochemical properties compared with its isomeric naphthalene. Herein, we made use of the diverse reactivity of each position on azulene to design a new synthetic strategy for azulene-based diimides bridged by phenyl or thieno[3, 2-b]thiophenyl group, 2-(azulen-2'-yl)-5-(azulen-2''-yl)benzene-1, 1':4, 1''-tetracarboxylic diimides (AzAzBDI-1/2) and 2-(azulen-2'-yl)-5- (azulen-2''-yl)thieno[3, 2-b]thiophene-3, 1':6, 1''-tetracarboxylic diimide (AzAzTTDI). The key step was double trifluoroacetylation at 1-position of two azulene moieties of the molecule followed by hydrolysis, anhydridization and imidization to obtain the target compounds. The single crystal structure analysis demonstrates that AzAzBDI-2 has twisted molecular backbone. The adjacent two molecules form a dimer through the intermolecular π-π stacking (0.365 nm) between the five-membered ring and the seven-membered ring of two different azulene units. Strong π-π intermolecular interactions (0.355 nm) exist among the dimers to form a slipped one-dimensional (1D) packing motif in the crystal. For three compounds, the optoelectronic properties were investigated by UV-vis absorption spectra and cyclic voltammetry, and their energy levels of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and the energy gaps were calculated. The HOMO/LUMO energy levels of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI are -5.56/-3.28 eV, -5.56/ -3.30 eV and -5.57/-3.42 eV, respectively. The end absorptions of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI in thin films show obvious red-shift (13, 13 and 25 nm) relative to those in CHCl3 solution, indicating strong intermolecular interactions in solid state. The charge carrier transport properties of three compounds were studied through organic field-effect transistors (OFETs). Bottom-gate and top-contact OFET devices of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI were fabricated by spin-coated their respective solution on octadecyltrimethoxysilane (OTMS)-treated SiO2/Si substrates. Under nitrogen atmosphere, all of these three compounds displayed electron-dominated ambipolar organic semiconductor characteristics. The electron mobilities of AzAzBDI-1 and AzAzBDI-2 were 0.068 cm2·V-1·s-1 and 0.086 cm2·V-1·s-1 and the hole mobility were 3.1×10-4 cm2·V-1·s-1 and 1.5×10-3 cm2·V-1·s-1, respectively. OFETs based on AzAzTTDI showed the highest electron mobility and hole mobilities of 0.087 cm2·V-1·s-1 and 8.8×10-3 cm2·V-1·s-1, respectively. The X-ray diffraction (XRD) and atomic force microscopy (AFM) studies demonstrate thin films of AzAzBDI-1, AzAzBDI-2 and AzAzTTDI show better crystallinity and form larger size of microstructures by annealing, which is consistent with the enhanced device performance after thermal annealing.
  • 加载中
    1. [1]

      (a) Wheland, G. W.; Mann, D. E. J. Chem. Phys. 1949, 17, 264. (b) Anderson, A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.

    2. [2]

      Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.  doi: 10.1016/0040-4020(76)87002-0

    3. [3]

      Beer, M.; Longuet-Higgins, H. C. J. Chem. Phys. 1955, 23, 1390.  doi: 10.1063/1.1742314

    4. [4]

      Kasha, M. Faraday Soc. 1950, 9, 14.  doi: 10.1039/df9500900014

    5. [5]

    6. [6]

    7. [7]

      (a) Umeyama, T.; Watanabe, Y.; Miyata, T.; Imahori, H. Chem. Lett. 2015, 44, 47. (b) Chen, Y.; Zhu, Y.; Yang, D.; Zhao, S.; Zhang, L.; Yang, L.; Wu, J.; Huang, Y.; Xu, Z.; Lu, Z. Chem. Eur. J. 2016, 22, 14527. (c) Puodziukynaite, E.; Wang, H. W.; Lawrence, J.; Wise, A. J.; Russell, T. P.; Barnes, M. D.; Emrick, T. J. Am. Chem. Soc. 2014, 136, 11043.

    8. [8]

      (a) Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656. (b) Truong, M. A.; Lee, J.; Nakamura, T.; Seo, J. Y.; Jung, M.; Ozaki, M.; Shimazaki, A.; Shioya, N.; Hasegawa, T.; Murata, Y.; Zakeeruddin, S. M.; Grätzel, M.; Murdey, R.; Wakamiya, A. Chem. Eur. J. 2019, 25, 6741.

    9. [9]

      (a) Asato, A. E.; Liu, R. S. H.; Rao, V. P.; Cai, Y. M. Tetrahedron Lett. 1996, 37, 419. (b) Iftime, G.; Lacroix, P. G.; Nakatani, K.; Razus, A. C. Tetrahedron Lett. 1998, 39, 6853. (c) Lacroix, P. G.; Malfant, I.; Iftime, G.; Razus, A. C.; Nakatani, K.; Delaire, J. A. Chem. Eur. J. 2000, 6, 2599. (d) Coe, B. J.; Harris, J. A.; Asselberghs, I.; Clays, K.; Olbrechts, G.; Persoons, A.; Hupp, J. T.; Johnson, R. C.; Coles, S. J.; Hursthouse, M. B.; Nakatani, K. Adv. Funct. Mater. 2002, 12, 110. (e) Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543. (f) Migalska-Zalas, A.; El kouari, Y.; Touhtouh, S. Opt. Mater. 2012, 34, 1639. (g) Herrmann, R.; Pedersen, B.; Wagner, G.; Youn, J.-H. J. Organomet. Chem. 1998, 571, 261.

    10. [10]

      (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944. (b) Wang, F. K.; Lin, T. T.; He, C. B.; Chi, H.; Tang, T.; Lai, Y. H. J. Mater. Chem. 2012, 22, 10448. (c) Ince, M.; Bartelmess, J.; Kiessling, D.; Dirian, K.; Martinez-Diaz, M. V.; Torres, T.; Guldi, D. M. Chem. Sci. 2012, 3, 1472.

    11. [11]

      (a) Ito, S.; Morita, N. Eur. J. Org. Chem. 2009, 4567. (b) Dong, J.; Zhang, H. Chin. Chem. Lett. 2016, 27, 1097. (c) Xin, H.; Gao, X. ChemPlusChem 2017, 82, 945. (d) Ou, L.; Zhou, Y.; Wu, B.; Zhu, L. Chin. Chem. Lett. 2019, 30, 1903.

    12. [12]

      Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.  doi: 10.1021/ed065p923

    13. [13]

      Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Adv. Mater. 1996, 8, 242.  doi: 10.1002/adma.19960080312

    14. [14]

    15. [15]

    16. [16]

      Guo, X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943.  doi: 10.1021/cr500225d

    17. [17]

      Xin, H.; Ge, C.; Yang, X.; Gao, H.; Yang, X.; Gao, X. Chem. Sci. 2016, 7, 6701.  doi: 10.1039/C6SC02504H

    18. [18]

      (a) Xin, H.; Li, J.; Ge, C.; Yang, X.; Xue, T.; Gao, X. Mater. Chem. Front. 2018, 2, 975. (b) Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.

    19. [19]

      Gao, H.; Yang, X.; Xin, H.; Gao, T.; Gong, H.; Gao, X. Chin. J. Org. Chem. 2018, 38, 2680 (in Chinese).

    20. [20]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Gaussian, Inc., Wallingford CT, 2016.

    21. [21]

      Brown, A. R.; Jarrett, C. P.; deLeeuw, D. M.; Matters, M. Synth. Met. 1997, 88, 37.  doi: 10.1016/S0379-6779(97)80881-8

    22. [22]

      (a) Lei, T.; Dou, J.; Pei, J. Adv. Mater. 2012, 24, 6457. (b) Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L. S.; Mannsfeld, C.; Yuan, W.; Sirringhaus, H.; Zhu, D. J. Am. Chem. Soc. 2013, 135, 2338.

  • 加载中
    1. [1]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    3. [3]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    5. [5]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    11. [11]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(3)
  • Abstract views(1392)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return