Citation: Zhu Qingqing, Song Xiaojun, Deng Zhaoxiang. Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface[J]. Acta Chimica Sinica, ;2020, 78(7): 675-679. doi: 10.6023/A20050145 shu

Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface

  • Corresponding author: Deng Zhaoxiang, zhxdeng@ustc.edu.cn
  • Received Date: 19 May 2020
    Available Online: 29 June 2020

    Fund Project: the National Natural Science Foundation of China 21425521Project supported by the National Key Research and Development Program of China (Nos. 2016YFA0201300, 2018YFA0702001) and the National Natural Science Foundation of China (Nos. 21425521, 21972130, 21521001)the National Natural Science Foundation of China 21521001the National Key Research and Development Program of China 2016YFA0201300the National Natural Science Foundation of China 21972130the National Key Research and Development Program of China 2018YFA0702001

Figures(4)

  • Metal nanostructures with localized surface plasmon resonance (LSPR) have attracted great attention in catalysis, sensing, nanooptics, and nanomedicine. Charge transfer plasmon (CTP) is a LSPR mode that strongly depends on a conductive junction between metallic nanounits. Benefitting from the charge transfer junction, CTP provides a facile way to generate widely tunable LSPR with highly localized/enhanced light magnetic field and photothermal effect. The limited availability of highly tunable CTP structures and their fabrication techniques hinders a further pursuit of their functions and applications. In response to this situation, the present work aims at developing a simple while highly efficient synthetic route to width-adjustable Au/Cu heterojunctions capable of evoking tunable CTP behaviors. The strategy relies on a non-specific surface adsorption of low-cost, naturally occurred fish sperm DNA on a gold nanoseed to control heterogeneous copper nucleation. Such a process offers a chance to tailor the contact area between the gold and copper nano-domains in the bimetallic structure. Highly tunable CTP resonance from visible to near-infrared region is then realizable on the basis of this method. Experimental and calculated extinction spectra consistently reveal three key variables for the CTP structure, including the width of conductive junction and the sizes of gold and copper particles. These parameters are associated with DNA coverage, copper precursor concentration, and the synthetic conditions for gold nanoparticles, which allow for a CTP tuning from visible to near infrared wavelengths. By fully exploiting these highly controllable parameters, the maximally achievable CTP wavelength readily enters a near infrared Ⅱ domain. The resulting CTP signals have a red-shift of up to 750 nm relative to the 530~570 nm LSPR peaks of individual gold and copper nanoparticles, corresponding to a very narrow Au/Cu conductive contact of 11~13 nm in width. The role of nonspecific DNA adsorption in the above process proves unique (currently irreplaceable) compared to other molecular adsorbates. The easily tunable Au/Cu heterointerface paves a way to integrated CTP and catalytic/sensing functions in future research.
  • 加载中
    1. [1]

      Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685.  doi: 10.1002/adma.200400271

    2. [2]

      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.  doi: 10.1021/cr200061k

    3. [3]

      Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett. 2004, 4, 899.  doi: 10.1021/nl049681c

    4. [4]

      Romero, I.; Aizpurua, J.; Bryant, G. W.; de Abajo, F. J. G. Opt. Express 2006, 14, 9988.  doi: 10.1364/OE.14.009988

    5. [5]

      Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Opt. Commun. 2003, 220, 137.  doi: 10.1016/S0030-4018(03)01357-9

    6. [6]

      Savage, K. J.; Hawkeye, M. M.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Baumberg, J. J. Nature 2012, 491, 574.  doi: 10.1038/nature11653

    7. [7]

      Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Nat. Commun. 2012, 3, 825.  doi: 10.1038/ncomms1806

    8. [8]

      Wen, F. F.; Zhang, Y.; Gottheim, S.; King, N. S.; Zhang, Y.; Nordlander, P.; Halas, N. J. ACS Nano 2015, 9, 6428.  doi: 10.1021/acsnano.5b02087

    9. [9]

      Atay, T.; Song, J. H.; Nurmikko, A. V. Nano Lett. 2004, 4, 1627.  doi: 10.1021/nl049215n

    10. [10]

      Pérez-González, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpurua, J. Nano Lett. 2010, 10, 3090.  doi: 10.1021/nl1017173

    11. [11]

      Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C. Nano Lett. 2011, 11, 1009.  doi: 10.1021/nl103817f

    12. [12]

      Lim, B. K.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. J. Am. Chem. Soc. 2010, 132, 2506.  doi: 10.1021/ja909787h

    13. [13]

      Tao, Z. X.; Wu, Z. S.; Yuan, X. L.; Wu, Y. S.; Wang, H. L. ACS Catal. 2019, 9, 10894.  doi: 10.1021/acscatal.9b03158

    14. [14]

      Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.; Jaramillo, T. F. Nat. Catal. 2018, 1, 764.  doi: 10.1038/s41929-018-0139-9

    15. [15]

      Zhu, X. Z.; Yip, H. K.; Zhuo, X. L.; Jiang, R. B.; Chen, J. L.; Zhu, X.-M.; Yang, Z.; Wang, J. F. J. Am. Chem. Soc. 2017, 139, 13837.  doi: 10.1021/jacs.7b07462

    16. [16]

      Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52, 10229.  doi: 10.1039/C6CC03717H

    17. [17]

      Cai, Z.; Kuang, Y.; Luo, L.; Wang, L. R.; Sun, X. M. Acta Chim. Sinica 2013, 71, 1265(in Chinese).
       

    18. [18]

      Liu, B. L.; Zhang, H. C.; Ding, Y. Chin. Chem. Lett. 2018, 29, 1725.  doi: 10.1016/j.cclet.2018.12.006

    19. [19]

      Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490.  doi: 10.1021/jacs.8b12381

    20. [20]

      Huang, X.; Li, Y.; Zhou, H.; Zhong, X.; Duan, X.; Huang, Y. Chem. Eur. J. 2012, 18, 9505.  doi: 10.1002/chem.201200817

    21. [21]

      Wu, K. H.; Zhou, Y. W.; Ma, X. Y.; Ding, C.; Cai, W. B. Acta Chim. Sinica 2018, 76, 292(in Chinese).  doi: 10.7503/cjcu20170465

    22. [22]

      Xu, S. Y.; Liu, Z. H.; Zhang, H.; Yu, J. R. Acta Chim. Sinica 2019, 77, 427(in Chinese).
       

    23. [23]

      Jung, H.; Cha, H.; Lee, D.; Yoon, S. ACS Nano 2015, 9, 12292.  doi: 10.1021/acsnano.5b05568

    24. [24]

      Scholl, J. A.; Garcia-Etxarri, A.; Koh, A. L.; Dionne, J. A. Nano Lett. 2013, 13, 564.  doi: 10.1021/nl304078v

    25. [25]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.  doi: 10.1021/cr1004452

    26. [26]

      Lan, X.; Chen, Z.; Liu, B. J.; Ren, B.; Henzie, J.; Wang, Q. B. Small 2013, 9, 2308.  doi: 10.1002/smll.201202503

    27. [27]

      Zhong, Z. Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A. J. Phys. Chem. B 2004, 108, 4046.  doi: 10.1021/jp037056a

    28. [28]

      Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. Nat. Mater. 2009, 8, 388.  doi: 10.1038/nmat2421

    29. [29]

      Yu, H.; Man, T. T.; Ji, W.; Shi, L. L.; Wu, C. W.; Pei, H.; Zhang, C. Chin. Chem. Lett. 2019, 30, 175.  doi: 10.1016/j.cclet.2018.04.020

    30. [30]

      Kim, J.-Y.; Kotov, N. A. Chem. Mater. 2014, 26, 134.  doi: 10.1021/cm402675k

    31. [31]

      Li, Y. L.; Deng, Z. X. Acc. Chem. Res. 2019, 52, 3442.  doi: 10.1021/acs.accounts.9b00463

    32. [32]

      Song, L.; Deng, Z. X. ChemNanoMat 2017, 3, 698.  doi: 10.1002/cnma.201700222

    33. [33]

      Fang, L. L.; Wang, Y. L.; Liu, M.; Gong, M.; Xu, A.; Deng, Z. X. Angew. Chem. Int. Ed. 2016, 55, 14296.  doi: 10.1002/anie.201608271

    34. [34]

      Fang, L. L.; Liu, D. L.; Wang, Y. L.; Li, Y. J.; Song, L.; Gong, M.; Li, Y.; Deng, Z. X. Nano Lett. 2018, 18, 7014.  doi: 10.1021/acs.nanolett.8b02965

    35. [35]

      Liu, M.; Fang, L. L.; Li, Y. L.; Gong, M.; Xu, A.; Deng, Z. X. Chem. Sci. 2016, 7, 5435.  doi: 10.1039/C6SC01407K

    36. [36]

      Wang, Y. L.; Fang, L. L.; Gong, M.; Deng, Z. X. Chem. Sci. 2019, 10, 5929.  doi: 10.1039/C9SC00403C

    37. [37]

      Sun, Y. Natl. Sci. Rev. 2015, 2, 329.  doi: 10.1093/nsr/nwv037

    38. [38]

      Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. J. Am. Chem. Soc. 2005, 127, 34.  doi: 10.1021/ja045220h

    39. [39]

      Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. J. Am. Chem. Soc. 2012, 134, 15822.  doi: 10.1021/ja305329g

    40. [40]

      Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Nano Lett. 2005, 5, 379.  doi: 10.1021/nl047955q

    41. [41]

      Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. J. Am. Chem. Soc. 2012, 134, 2004.  doi: 10.1021/ja211086y

    42. [42]

      Sun, Y. G.; Foley, J. J.; Peng, S.; Li, Z.; Gray, S. K. Nano Lett. 2013, 13, 3958.  doi: 10.1021/nl402361b

    43. [43]

      Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. Angew. Chem. Int. Ed. 2015, 54, 8114.  doi: 10.1002/anie.201500838

    44. [44]

      Lee, J. H.; You, M. H.; Kim, G. H.; Nam, J. M. Nano Lett. 2014, 14, 6217.  doi: 10.1021/nl502541u

    45. [45]

      Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722.  doi: 10.1021/acs.chemrev.5b00482

    46. [46]

      Chen, S. T.; Jenkins, S. V.; Tao, J.; Zhu, Y. M.; Chen, J. Y. J. Phys. Chem. C 2013, 117, 8924.  doi: 10.1021/jp4013653

    47. [47]

      Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. J. Am. Chem. Soc. 2018, 140, 8569.  doi: 10.1021/jacs.8b04558

    48. [48]

      Wu, S. H.; Chen, D. H. J. Colloid Interface Sci. 2004, 273, 165.  doi: 10.1016/j.jcis.2004.01.071

    49. [49]

      Lin, M. H.; Kim, G. H.; Kim, J. H.; Oh, J. W.; Nam, J. M. J. Am. Chem. Soc. 2017, 139, 10180.  doi: 10.1021/jacs.7b04202

    50. [50]

      Kim, J. H.; Park, J. E.; Lin, M.; Kim, S.; Kim, G. H.; Park, S.; Ko, G.; Nam, J. M. Adv. Mater. 2017, 29, 1702945.  doi: 10.1002/adma.201702945

    51. [51]

      Kislenko, V. N.; Oliynyk, L. P. J. Polym. Sci., Part A:Polym. Chem. 2002, 40, 914.  doi: 10.1002/pola.10157

    52. [52]

      Hohenester, U.; Trügler, A. Comput. Phys. Commun. 2012, 183, 370.  doi: 10.1016/j.cpc.2011.09.009

    53. [53]

      Wolf, L. K.; Gao, Y.; Georgiadis, R. M. Langmuir 2004, 20, 3357.  doi: 10.1021/la036125+

    54. [54]

      Fang, Y. J. Chem. Phys. 1998, 108, 4315.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    9. [9]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    12. [12]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    13. [13]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    14. [14]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    17. [17]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    18. [18]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

Metrics
  • PDF Downloads(16)
  • Abstract views(1322)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return