Citation: Wan Rui-Chen, Wu Si-Guo, Liu Jun-Liang, Jia Jian-Hua, Huang Guo-Zhang, Li Quan-Wen, Tong Ming-Liang. Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination[J]. Acta Chimica Sinica, ;2020, 78(5): 412-418. doi: 10.6023/A20030077 shu

Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination

  • Corresponding author: Jia Jian-Hua, jiajh3@mail.sysu.edu.cn Tong Ming-Liang, tongml@mail.sysu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 19 March 2020
    Available Online: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21620102002the Fundamental Research Funds for Central Universities 19lgyjs31the Science and Technology Plan of Guangzhou 201806010192the Natural Science Foundation of Guangdong Province 2017A030313059Project supported by the National Natural Science Foundation of China (Nos. 21771198, 21620102002), the Natural Science Foundation of Guangdong Province (No. 2017A030313059), the Science and Technology Plan of Guangzhou (No. 201806010192) and the Fundamental Research Funds for Central Universities (No. 19lgyjs31)the National Natural Science Foundation of China 21771198

Figures(8)

  • Single-molecule magnets (SMMs), exhibiting magnetic bistability and slow magnetization relaxation, have fascinated scientific community for their promising applications in data storage and information processing. Great development has been achieved in lanthanide-based SMMs due to the unquenched orbital momentum and strong anisotropy of lanthanide ions. According to the crystal-field theory, the magnetic anisotropy of lanthanide ions arises from crystal-field splitting. Appropriate arrangement of coordination environment of lanthanide ion (including the local symmetry as well as the charge distribution) is key to design high-performance SMMs. However, it still remains a huge challenge to generate lanthanide-containing compounds with certain coordination environment. Taking advantage of metallacrown (MC) approach, herein a series of 3d-4f complexes {TbNi5X2} (X=F, Cl, Br) were successfully isolated via solvothermal reactions. To obtain these complexes, a mixture of stoichiometric metal salt and quinaldichdroxamic acid with excess of pyridine derivative was dissolved in methanol and then heated at 75℃ for 2 d. X-ray single-crystal diffraction analysis indicated that the Tb(Ⅲ) site equatorially coordinates with[15-MCNi(Ⅱ)-5], whilst is axially capped by halide ions. As a result, the lanthanide ion possesses high axiality with a pentagonal bipyramid geometry (D5h). Alternative current magnetic susceptibility data revealed that the electrostatic interactions between f-electrons and ligand electrons play an important role in modulating the magnetic relaxation dynamics. Maximizing the axial charge density in {TbNi5F2} where the[F-Ln-F]+ moiety is firstly reported in lanthanide chemistry, the oblate Tb(Ⅲ) is placed in a judicious crystal field. The out-of-phase signal of {TbNi5F2} shows obvious temperature and frequency dependence under 1 kOe applied dc field. Additionally, the slow magnetization relaxation of {TbNi5F2} can be fitted by the power law or Arrhenius plot with reversal barrier of 19.0 K. By lowering the electrostatic interactions of axial ligation, the out-of-phase signal significantly weakens in {TbNi5Cl2} and even vanishes in {TbNi5Br2}. The decline of magnetic anisotropy in {TbNi5Cl2} and {TbNi5Br2} accelerates the fast quantum tunneling of magnetization. The results demonstrate for the first time that the Off/Part/On slow magnetization relaxation can be modulated via the improvement of electronegativity of axial ligands.
  • 加载中
    1. [1]

      Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.  doi: 10.1038/365141a0

    2. [2]

      Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets, Oxford University Press, Oxford, 2006.

    3. [3]

      Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Acc. Chem. Res. 2016, 49, 2381.  doi: 10.1021/acs.accounts.6b00222

    4. [4]

      Ungur, L.; Lin, S.-Y.; Tang, J.; Chibotaru, L. F. Chem. Soc. Rev. 2014, 43, 6894.  doi: 10.1039/C4CS00095A

    5. [5]

      McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. Chem. Sci. 2018, 9, 8492.  doi: 10.1039/C8SC03907K

    6. [6]

      Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 12967.  doi: 10.1021/jacs.9b05816

    7. [7]

      Goodwin, C. A.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Nature 2017, 548, 439.  doi: 10.1038/nature23447

    8. [8]

      Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A. Angew. Chem., Int. Ed. 2017, 56, 11445.  doi: 10.1002/anie.201705426

    9. [9]

      Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamaki, A.; Layfield, R. A. Science 2018, 362, 1400.  doi: 10.1126/science.aav0652

    10. [10]

      Guo, P.-H.; Liao, X.-F.; Leng, J.-D.; Tong, M.-L. Acta Chim. Sinica 2013, 71, 173.
       

    11. [11]

      Tian, H.-Q.; Zheng, L.-M. Acta Chim. Sinica 2020, 78, 34.
       

    12. [12]

      Velkos, G.; Krylov, D. S.; Kirkpatrick, K.; Spree, L.; Dubrovin, V.; Bgchner, B.; Avdoshenko, S. M.; Bezmelnitsyn, V.; Davis, S.; Faust, P.; Duchamp, J.; Dorn, H. C.; Popov, A. A. Angew. Chem., Int. Ed. 2019, 58, 5891.  doi: 10.1002/anie.201900943

    13. [13]

      Li, H.; Meng, X.; Wang, M.; Wang, Y.-X.; Shi, W.; Cheng, P. Chin. J. Chem. 2019, 37, 373.  doi: 10.1002/cjoc.201800589

    14. [14]

      Gou, X.-S.; Wang, M.-M.; Meng, Q.-Q.; Cheng, P. Chin. J. Inorg. Chem. 2019, 35, 2013.  doi: 10.11862/CJIC.2019.232

    15. [15]

      Yan, H.; Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Tong, M.-L. J. Chin. Soc. Rare Earths 2016, 34, 726. 

    16. [16]

      Liu, K.; Zhang, X.; Meng, X.; Shi, W.; Cheng, P.; Powell, A. K. Chem. Soc. Rev. 2016, 45, 2423.  doi: 10.1039/C5CS00770D

    17. [17]

      (a) Sievers, J. Z. Phys. B: Condens. Matter 1982, 45, 289. (b) Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.

    18. [18]

      Liu, J.-L.; Chen, Y.-C.; Zheng, Y.-Z.; Lin, W.-Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M.-L. Chem. Sci. 2013, 4, 3310.  doi: 10.1039/c3sc50843a

    19. [19]

      Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Chem. Soc. Rev. 2018, 47, 2431.  doi: 10.1039/C7CS00266A

    20. [20]

      Liu, J.-L.; Wu, J.-Y.; Chen, Y.-C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. Angew. Chem., Int. Ed. 2014, 53, 12966.  doi: 10.1002/anie.201407799

    21. [21]

      Huang, G.-Z.; Ruan, Z.-Y.; Zheng, J.-Y.; Chen, Y.-C.; Wu, S.-G.; Liu, J.-L.; Tong, M.-L. Sci. China, Chem. 2020, 63, DOI:10.1007/s11426-020-9746-x.  doi: 10.1007/s11426-020-9746-x

    22. [22]

      Huang, G.-Z.; Ruan, Z. Y.; Zheng, J. Y.; Wu, J. Y.; Chen, Y. C.; Li, Q. W.; Akhtar, M. N.; Liu, J. L.; Tong, M. L. Sci. China, Chem. 2018, 61, 1399.  doi: 10.1007/s11426-018-9310-y

    23. [23]

      Liu, J.; Chen, Y. C.; Liu, J. L.; Vieru, V.; Ungur, L.; Jia, J. H.; Chibotaru, L. F.; Lan, Y. H.; Wernsdorfer, W.; Gao, S.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 5441.  doi: 10.1021/jacs.6b02638

    24. [24]

      Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 2829.  doi: 10.1021/jacs.5b13584

    25. [25]

      Chen, Y.-C.; Liu, J.-L.; Wernsdorfer, W.; Liu, D.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. Angew. Chem., Int. Ed. 2017, 56, 4996.  doi: 10.1002/anie.201701480

    26. [26]

      Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.  doi: 10.1021/cr078200h

    27. [27]

      Happ, P.; Plenk, C.; Rentschler, E. Coord. Chem. Rev. 2015, 289, 238.
       

    28. [28]

      Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Chen, Y.-C.; Liu, J.; Wang, L.-F.; Tong, M.-L. Chem. Commun. 2015, 51, 10291.  doi: 10.1039/C5CC03389F

    29. [29]

      Li, Q.-W.; Wan, R.-C.; Chen, Y.-C.; Liu, J.-L.; Wang, L.-F.; Jia, J.-H.; Chilton, N. F.; Tong, M.-L. Chem. Commun. 2016, 52, 13365.  doi: 10.1039/C6CC06924J

    30. [30]

      Carlin, R. L. Translated by Wan, C. D. Magnetochemistry, Nanjing University Press, Nanjing, 1990.

    31. [31]

      Wang, J.; Ruan, Z.-Y.; Li, Q.-W.; Chen, Y.-C.; Huang, G.-Z.; Liu, J.-L.; Reta, D.; Chilton, N. F.; Wang, Z.-X.; Tong, M.-L. Dalton Trans. 2019, 48, 1686.  doi: 10.1039/C8DT04814B

    32. [32]

      Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.  doi: 10.1063/1.1750906

    33. [33]

      Liu, J.-L.; Yuan, K.; Leng, J.-D.; Ungur, L.; Wernsdorfer, W.; Guo, F.-S.; Chibotaru, L. F.; Tong, M.-L. Inorg. Chem. 2012, 51, 8538.  doi: 10.1021/ic301115b

    34. [34]

      Bruker, SAINT, Version V8. 37A, Madison, 2015.

    35. [35]

      Bruker, SADABS, Version 2014/5, Madison, 2014.

    36. [36]

      Bruker, SHELXTL, Software Version 6. 12, Madison, 2001.

    37. [37]

      Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

    38. [38]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.  doi: 10.1107/S0021889808042726

    39. [39]

      Spek, A. L. Acta Cryst. 2015, C71, 9.

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    6. [6]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    10. [10]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(22)
  • Abstract views(3054)
  • HTML views(450)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return