Citation: Shui Ziyi, He Nana, Chen Li, Zhao Wei, Chen Xi. Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery[J]. Acta Chimica Sinica, ;2020, 78(6): 557-564. doi: 10.6023/A20030068 shu

Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery

  • Corresponding author: Zhao Wei, zhaowei3313@nwu.edu.cn Chen Xi, xichen863@hotmail.com
  • Received Date: 14 March 2020
    Available Online: 18 May 2020

    Fund Project: the National Natural Science Foundation of China 11872302the Shaanxi Provincial Department of Education Natural Science Special Project 20JK0927the Natural Science Basic Research Program of Shaanxi Province 2019JQ-431Project supported by the National Natural Science Foundation of China (No. 11872302), the Natural Science Basic Research Program of Shaanxi Province (No. 2019JQ-431) and the Shaanxi Provincial Department of Education Natural Science Special Project (No. 20JK0927)

Figures(9)

  • Perovskite-type catalytic materials have received wide attention as high-performance and low-cost alternatives to precious metal catalysts on the market at present, which have much considerable activity and stability as catalysts for oxygen reduction reactions. Current efforts are mainly focused on the use of perovskite make-up and preparation techniques to influence elemental composition, morphology, surface area, and structural control. For a typical perovskite oxide (ABO3), due to the high calcination temperature in the preparation process, the perovskite material usually has a small specific surface area, which limits the increase of activity in heterogeneous catalytic reactions. In this paper, the perovskite La0.7Sr0.3MnO3 (LSMO) material with large specific surface and high catalytic activity is prepared by means of the SiO2 template. The physicochemical properties of the synthesized materials are characterized by scanning electron microscope (SEM), energy dispersed X-ray spectroscopy (EDS), X-ray diffraction (XRD) and BET. The catalytic activity of LSMO as an oxygen reduction reaction (ORR) catalyst is measured by a rotating disk test system. After that, the catalyst material is applied to a flexible aluminum-air battery and its discharge behavior and flexibility is studied and tested. The test results show that the LSMO prepared by template method has a large specific surface area (31.1825 m2·g-1), and pore volume (0.161113 cm3·g-1), and it also shows higher electrocatalytic activity in the electrochemical test system. When it is used in aluminum-air batteries, the activity of 3D porous LSMO is significantly better than that of sheet and bulk LSMO. The aluminum-air battery assembled by LSMO prepared by the template method has a higher discharge voltage (up to 1.46 V) at a constant current. Compared to the template-free method and the sol-gel method, the discharge voltage in flexible aluminum-air battery can be increased by 8.2% and 24.5%, respectively, and the performance degradation is significantly slowed during high-current discharge. The specific capacity and energy density of the battery are up to 1048.6 mA·h·g-1 and 1020.6 mW·h·g-1, respectively. When the battery is in a deformed state, its output voltage can be stabilized above 1.38 V. Once released, the voltage can be immediately restored to over 99% of the initial value. This paper not only provides a solution for the commercialization of fuel cell, but also provides a new direction for the future development of variable power supply.
  • 加载中
    1. [1]

      Song, M. J.; Shin, M. W. Appl. Surf. Sci. 2014, 320, 435.  doi: 10.1016/j.apsusc.2014.09.100

    2. [2]

      Arora, P.; Zhang, Z. J. Chem. Rev. 2004, 104, 4419  doi: 10.1021/cr020738u

    3. [3]

      Xu, Y.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. Angew. Chem., Int. Ed. 2016, 55, 7979.  doi: 10.1002/anie.201601804

    4. [4]

      Que, Y.; Qi, M.; Shi, P. Chin. Battery Ind. 2019, 23, 147.  doi: 10.3969/j.issn.1008-7923.2019.03.007

    5. [5]

      Xie, K.; Wei, B. Adv. Mater. 2014, 26, 3592.  doi: 10.1002/adma.201305919

    6. [6]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.  doi: 10.1039/c1cs15228a

    7. [7]

      Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473.  doi: 10.3866/PKU.WHXB201212273
       

    8. [8]

      Hong, Q.; Lu, H. Sci. Rep. 2017, 7, 3378.  doi: 10.1038/s41598-017-03609-9

    9. [9]

      Li, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Yang, S.-H. J. Am. Chem. Soc. 2010, 132, 12170.  doi: 10.1021/ja1036572

    10. [10]

      Meng, H.; Shen, P. K. Electrochem. Commun. 2006, 8, 588.  doi: 10.1016/j.elecom.2006.01.020

    11. [11]

      Hao, J.; Liu, Y.; Li, W.; Li, J. Mater. Rev. 2019, 33, 127.  doi: 10.11896/cldb.201901014

    12. [12]

      Jin, Q.; Pei, L.; Hu, Y.; Du, J.; Han, X.; Cheng, F.; Chen, J. Acta Chim. Sinica 2014, 72, 920.
       

    13. [13]

      Wang, D.; Chen, X.; Evans, D.-G.; Yang, W. Nanoscale 2013, 5, 5312.  doi: 10.1039/c3nr00444a

    14. [14]

      Wang, Y.; Wei, Z. J. Electrochem. 2018, 24, 427.
       

    15. [15]

      Yin, W.; Shen, Y.; Zou, F.; Hu, X.; Chi, B.; Huang, Y. ACS Appl. Mater. Interfaces 2015, 7, 4947.  doi: 10.1021/am509143t

    16. [16]

      Liu, M.; Zhang, R.; Chen, W. Chem. Rev. 2014, 114, 5117.  doi: 10.1021/cr400523y

    17. [17]

      Liu, L.; Yuan, Z.; Qiu, C.; Liu, J. Solid State Ionics 2013, 241, 25.  doi: 10.1016/j.ssi.2013.03.031

    18. [18]

      Wang, Y.; Zhang, L.; Hu, T. Acta Chim. Sinica 2015, 73, 316.
       

    19. [19]

      Miyazaki, K.; Kawakita, K.; Abe, T.; Fukutsuka, T.; Kojima, K.; Ogumi, Z. J. Mater. Chem. 2011, 21, 1913.  doi: 10.1039/C0JM02600J

    20. [20]

      Lin, S.; Xu, S.-F.; Wang, J.-D.; Xie, C.-S.; Yuan, A.-H.; Han, G.-F.; Zhang, L.; Zhang, L.-M.; Li, Y.; Yan, Z.-M. Acta Chim. Sinica 2005, 63, 385.
       

    21. [21]

      Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N.; Matsuda, M.; Murota, T.; Uosaki, K.; Ueda, W. J. Am. Chem. Soc. 2013, 135, 11125.  doi: 10.1021/ja403476v

    22. [22]

      Xue, Y.; Miao, H.; Sun, S.; Wang, Q.; Li, S.; Liu, Z. J. Power Sources 2017, 342, 192.  doi: 10.1016/j.jpowsour.2016.12.065

    23. [23]

      Stoerzinger, K. A.; Lü, W.; Li, C.; Ariando; Venkatesan, T.; Yang, S.-H. J. Phys. Chem. Lett. 2015, 6, 1435.  doi: 10.1021/acs.jpclett.5b00439

    24. [24]

      Hu, J.; Wang, L.; Shi, L.; Huang, H. J. Power Sources 2014, 269, 144.  doi: 10.1016/j.jpowsour.2014.07.004

    25. [25]

      Liu, Y.; Dai, H.; Du, Y.; Deng, J.; Zhang, L.; Zhao, Z.; Au, C. T. J. Catal. 2012, 287, 149.  doi: 10.1016/j.jcat.2011.12.015

    26. [26]

      Lee, Y. C.; Peng, P. Y.; Chang, W. S.; Huang, C. M. J. Taiwan Chem. Eng. 2014, 45, 2334.  doi: 10.1016/j.jtice.2014.05.023

    27. [27]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.  doi: 10.1016/0021-9797(68)90272-5

    28. [28]

      Yang, C. H.; Chen, B. J.; Lu, J.; Yang, J. H.; Zhou, J.; Chen, Y. M.; Suo, Z. Extreme Mech. Lett. 2015, 25, 59.

    29. [29]

      Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Energy Environ. Sci. 2017, 10, 2056.  doi: 10.1039/C7EE01913K

    30. [30]

      Song, S.-D.; Tang, Z.-Y.; Pan, L.-Z.; Nan, J.-M. Acta Chim. Sinica 2005, 63, 363.
       

    31. [31]

      Liu, Y.; Li, J.; Li, W.; Li, Y.; Zhan, F.; Tang, H.; Chen, Q. Int. J. Hydrogen Energy 2016, 41, 10354.  doi: 10.1016/j.ijhydene.2015.10.109

    32. [32]

      Zhang, Z.; Zuo, C.; Liu, Z.; Yu, Y.; Zuo, Y.; Song, Y. J. Power Sources 2014, 251, 470.  doi: 10.1016/j.jpowsour.2013.11.020

  • 加载中
    1. [1]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(16)
  • Abstract views(1605)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return