Citation: Jia Xiaoyan, Li Zhenhuan. Synthesis of N-Carboxy Alanine Anhydride from Alanine and Dimethyl Carbonate over NaZnPO4 in One-pot[J]. Acta Chimica Sinica, ;2020, 78(6): 540-546. doi: 10.6023/A20020024 shu

Synthesis of N-Carboxy Alanine Anhydride from Alanine and Dimethyl Carbonate over NaZnPO4 in One-pot

  • Corresponding author: Li Zhenhuan, lizhenhuan@tiangong.edu.cn
  • Received Date: 7 February 2020
    Available Online: 13 May 2020

    Fund Project: the National Natural Science Foundation of China 21376177Project supported by the National Natural Science Foundation of China (Nos. 21676202, 21376177)the National Natural Science Foundation of China 21676202

Figures(11)

  • In this paper, the environmentally friendly synthesis of N-carboxy alanine anhydride (Ala-NCA) from alanine and dimethyl carbonate (DMC) over NaZnPO4 was carried out in one-pot, and the NaZnPO4 catalyst with the acid-base double active sites was prepared by the solid phase synthesis method. The X-ray diffraction spectrometer (XRD) was used to characterize the structure of NaZnPO4, and the reaction products were analyzed by the high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD). The GC-MS characterized result of obtained Ala-NCA was extremely consistent with that of the standard sample, which indicated that Ala-NCA was synthesized successfully. When the reaction was carried out at 150℃ for 8 h, the maximum 46.84% yield of Ala-NCA can be obtained in DMF solvent. As the reaction temperature increased to 160℃, Ala-NCA yield significantly declined because of the instability of Ala-NCA at higher temperature. However, there was no Ala-NCA formation without catalyst existence because DMC is not easy to undergo carboxymethylation with amino acids. NaZnPO4 could be recycled, but Ala-NCA yield declined to 38.62% after the fifth cycle. The reasons for that were attributed to the catalyst surface area reduction and the active site loss of Na-O and Zn2+. The reaction between DMC and amino acids over NaZnPO4 were characterized by TG-MS-IR, and the possible catalytic mechanism was provided. Namely, Zn2+ and Na-O in NaZnPO4 perform an effective acid-base synergistic catalysis, on the one hand the basic Na-O active sites play an key role on amino group deprotonation, which promotes the carboxymethylation of amino acids with DMC, on the other hand the acid active sites of Zn2+ can well catalyze the cyclization of intermediate into Ala-NCA. In this cyclization process, NaZnPO4 also can transfer the trapped protons to carboxymethylation intermediate to facile the formation of target compounds.
  • 加载中
    1. [1]

      (a) Deming, T. J. Nature 1997, 390, 386; (b) Liang, J.; Zhi, X.; Zhou, Q.; Yang, J. Polymer 2019, 165, 830; (c) Nie, Y.; Zhi, X.; Du, H.; Yang, J. Molecules 2018, 23, 760; (d) Lu, H.; Cheng, J. J. Am. Chem. Soc. 2007, 129, 14114; (e) Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Biomacromolecules 2004, 5, 1653.

    2. [2]

      (a) Deming, T. J. Adv. Polym. Sci. 2006, 202, 1; (b) Cheng, R. P.; Fisher, S. L.; Imperiali, B. J. Am. Chem. Soc. 1996, 118, 11349.

    3. [3]

      Maji, S. K.; Banerjee, R.; Velmurugan, D.; Razak, A.; Fun, H. K.; Banerjee, A. J. Org. Chem. 2002, 67, 633.  doi: 10.1021/jo010314k

    4. [4]

      Frank, A. O.; Vangamudi, B.; Feldkamp, M. D. J. Med. Chem. 2014, 57, 2455.  doi: 10.1021/jm401730y

    5. [5]

      (a) Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J. Nature 2000, 403, 289; (b) Deming, T. J. Adv. Drug. Delive. Rev. 2002, 54, 1145; (c) Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucede, L.; Tella, P.; Tuchscherer, G.; Mutter, M. S. J. Am. Chem. Soc. 2005, 127, 11888; (d) Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330; (e) Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.

    6. [6]

      Leuchs, H. J. Ber. Dtsch. Chem. Ges. 1906, 39, 857.  doi: 10.1002/cber.190603901133

    7. [7]

      (a) Kricheldorf, H. R.; Lossow, C. V.; Schwarz, G. Macromol. Chem. Phys. 2005, 206, 282; (b) Ohkawa, K.; Nagai, T.; Nishida, A.; Yamomoto, H. J. Adhes. 2009, 85, 770.

    8. [8]

      (a) Vayaboury, W.; Giani, O.; Collet, H.; Commeyras, A.; Schué, F. Amino Acids 2004, 27, 161; (b) Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeyras, A. Tetrahedron Lett. 1996, 37, 9043.

    9. [9]

      (a) Tundo, P.; Selva, M. J. Acc. Chem. Res. 2002, 35, 706; (b) Tundo, P.; Musolino, M.; Aricò, F. Green Chem. 2018, 20, 28; (c) Anastas, P. T.; Lankey, R. L. Green Chem. 2000, 2, 289; (d) Li, Z.; Cheng, B.; Su, K.; Gu, Y.; Xi, P.; Guo, M. J. Mol. Catal. A 2008, 289, 100.

    10. [10]

      Zhang, Z.; Su, K.; Li, Z. Org. Lett. 2019, 21, 749.  doi: 10.1021/acs.orglett.8b03984

    11. [11]

      Nenoff, T. M.; Harrison, W. T. A.; Gier, T. E.; Stucky, G. S. J. Am. Chem. Soc. 1991, 113, 378.  doi: 10.1021/ja00001a065

    12. [12]

      Tundo, P.; Arico, P.; Rosamilia, A. E.; Rigo, M.; Maranzana, A.; Tonachini, G. Pure Appl. Chem. 2009, 81, 1971.  doi: 10.1351/PAC-CON-08-12-02

    13. [13]

      Wang, J. X. M.S. Thesis, North University of China, Taiyuan, 2005 (in Chinese).

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    7. [7]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    16. [16]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(10)
  • Abstract views(1381)
  • HTML views(264)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return