Citation: Ma Chao, Wu Jiawei, Zhu Lin, Han Xiaoxia, Ruan Weidong, Song Wei, Wang Xu, Zhao Bing. Trace Detection of Rhodamine B in Infant Candy by g-C3N4/Ag Nanocomposite as Surface-Enhanced Raman Scattering Substrate[J]. Acta Chimica Sinica, ;2019, 77(10): 1024-1030. doi: 10.6023/A19050191 shu

Trace Detection of Rhodamine B in Infant Candy by g-C3N4/Ag Nanocomposite as Surface-Enhanced Raman Scattering Substrate

  • Corresponding author: Song Wei, weisong@jlu.edu.cn Wang Xu, wxu@jlu.edu.cn
  • Received Date: 23 May 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 21773080the National Natural Science Foundation of China 21473068the Jilin Province Science and Technology Development Plan Project 20180101295JCProject supported by the National Natural Science Foundation of China (Nos. 21473068, 21711540292, 21773080) and the Jilin Province Science and Technology Development Plan Project (No. 20180101295JC)the National Natural Science Foundation of China 21711540292

Figures(7)

  • In recent years, food safety problems caused by illegal additions in infant foods have received widespread attention. Surface-enhanced Raman scattering (SERS) technique is used to rapidly and non-destructively detect the banned RhB that is usually added in food. In this study, we have prepared g-C3N4/Ag composites via a simple method successfully, their morphology and structure were characterized by transmission electron microscope (TEM), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), fluorescence spectrophotometer and confocal micro-Raman spectrometer (Raman). The g-C3N4 nanosheet possesses good adsorption performance due to its highly delocalized π-conjugated system, which acts as a carrier for Ag nanoparticles. Therefore, Ag nanoparticles are more uniformly and stably distributed on the surface of g-C3N4 nanosheets to form g-C3N4/Ag nanocomposite, which can be used for rapid adsorption and trace detection of RhB. In the experiment, the pH of the test and the absorbed time between the substrate and RhB were optimized. The influence of pH on the SPR of the substrate and the SERS intensity of the probe molecule were investigated in detail. As g-C3N4/Ag nanocomposite shows a significant higher absorption in the visible region around 500 nm than Ag nanoparticles, g-C3N4/Ag nanocomposite is more favorable for SPR absorption. A wide SPR absorption range is achieved due to the synergy between g-C3N4 and Ag nanoparticles, providing an improved SERS enhancement performance. Under the optimal experimental conditions by using RhB as probe molecule, an enhancement factor of 7.6×105 is achieved. Due to the electrostatic interaction and π-π interaction between the substrate and the probe molecules, the substrate can enrich in a large amount of cationic dyes, offering a detection of RhB. The g-C3N4/Ag SERS substrate can be used to detect RhB with a linear relationship from 1.0×10-9 to 1.0×10-6 mol/L and a detection limit as low as 0.39 nmol/L. In addition, the g-C3N4/Ag nanocomposite SERS substrate can also detect trace amounts of RhB molecules in the commercially available rainbow lollipops with a high sensitivity, and the recovery were 93.6%~95.04%. In summary, the g-C3N4/Ag nanocomposite is not only a SERS substrate with high sensitivity, uniformity and stability, but also can be used as a rapid trace detection method of Rhodamine B in real food and environment.
  • 加载中
    1. [1]

      Wang, C.; Cheng, F.; Wang, Y.; Gong, Z.; Fan, M. Anal. Methods 2014, 6, 7218.  doi: 10.1039/C4AY01487A

    2. [2]

      Vineis, P.; Pirastu, R. Cancer Causes Control. 1997, 346, 355.

    3. [3]

      Oplatowska, M.; Elliott, C. T. Analyst 2011, 136, 2403.  doi: 10.1039/c0an00934b

    4. [4]

      Qi, P.; Lin, Z.; Li, J.; Wang, C.; Meng, W.; Hong, H.; Zhang, X. Food Chem. 2014, 164, 98.  doi: 10.1016/j.foodchem.2014.05.036

    5. [5]

      Jiao, C.-L.; Wang, W.; Liu, J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2018, 76, 526.
       

    6. [6]

      Hussain, M.; Sun, H.; Karim, S.; Nisar, A.; Khan, M.; ul Haq, A.; Iqbal, M.; Ahmad, M. J. Nanopart. Res. 2016, 18, 95.  doi: 10.1007/s11051-016-3397-y

    7. [7]

      Alesso, M.; Bondioli, G.; Talío, M. C.; Luconi, M. O.; Fernández, L. P. Food Chem. 2012, 134, 513.  doi: 10.1016/j.foodchem.2012.02.110

    8. [8]

      Zhao, H.; Hasi, W.; Bao, L.; Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Tian, Z. Chin. J. Chem. 2017, 35, 1522.  doi: 10.1002/cjoc.201700168

    9. [9]

      Kreno, L, E.; Greeneltch, N. G.; Farha, O. K.; Hupp, J. T.; Van Duyne, R. P. Analyst 2014, 139, 4073.  doi: 10.1039/C4AN00413B

    10. [10]

      Liu, J.; Sun, H.-L; Yin, L.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2019, 77, 257.  doi: 10.3866/PKU.WHXB201803191
       

    11. [11]

      Zhang, C.-J.; Zhang, J.; Lin, J.-R.; Xu, M.-M.; Yao, J.-L. Acta Chim. Sinica 2017, 75, 860.
       

    12. [12]

      Jiang, J.; Zhu, L.; Zou, J.; Qu, Y.-L.; Zheng, A.; Tang, H. Carbon 2015, 87, 193.  doi: 10.1016/j.carbon.2015.02.025

    13. [13]

      Xu, H.; Yan, J.; She, X.; Xu, L.; Xia, J.; Xu, Y.; Li, H. Nanoscale 2014, 6, 1406.  doi: 10.1039/C3NR04759H

    14. [14]

      Qu, L.; Wang, N.; Xu, H.; Wang, W.; Liu, Y.; Ku, L.; Li, H. Adv. Funct. Mater. 2017, 27, 1701714.  doi: 10.1002/adfm.201701714

    15. [15]

      Wang, Y. N.; Zhang, Y.; Zhang, W. S.; Xu, Z. R. Sens. Actuators, B 2018, 260, 400.  doi: 10.1016/j.snb.2017.12.173

    16. [16]

      Su, Y.-Y.; Peng, T.-H.; Xin, F.-F.; Li, D.; Fan, C.-H. Acta Chim. Sinica 2017, 75, 1036.
       

    17. [17]

      Gao, Z.-G.; Zheng, T.-T.; Deng, J.; Li, X.-R.; Qu, Y.-Y.; Lu, Y.; Liu, T.-J. Acta Chim. Sinica 2017, 75, 355.  doi: 10.7503/cjcu20160572
       

    18. [18]

      Xu, Q.; Cheng, B.; Yu, J.; Liu, G. Carbon 2017, 118, 241.  doi: 10.1016/j.carbon.2017.03.052

    19. [19]

      Jin, J.; Zhu, S.; Song, Y.; Zhao, H.; Zhang, Z.; Guo, Y.; Zhao, B. ACS Appl. Mater. Interfaces 2016, 8, 27956.  doi: 10.1021/acsami.6b07807

    20. [20]

      Jiang, J.; Zou, J.; Wee, A. T. S.; Zhang, W. Sci. Rep. 2016, 6, 34599.  doi: 10.1038/srep34599

    21. [21]

      Bu, T.; Ma, X.; Zhao, B.; Song, W. Chem. Res. Chin. Univ. 2018, 34, 290.  doi: 10.1007/s40242-018-7212-4

    22. [22]

      Zhai, C.; Peng, Y.-K.; Li, Y.-Y.; Xu, T.-F. Acta Chim. Sinica 2015, 73, 1167.  doi: 10.3969/j.issn.0253-2409.2015.10.003
       

    23. [23]

      Fan, M.; Andrade, G. F. S.; Brolo, A. G. Anal. Chim. Acta 2011, 693, 7.  doi: 10.1016/j.aca.2011.03.002

    24. [24]

      Saleh, T. A.; Al-Shalalfeh, M.; Al-Saadi, A. Sens. Actuators, B 2018, 254, 1110.  doi: 10.1016/j.snb.2017.07.179

    25. [25]

      Nie, S.; Emory, S. R. Science 1997, 275, 1102.  doi: 10.1126/science.275.5303.1102

    26. [26]

      Ding, S.-Y.; Wu, D.-Y.; Yang, Z.-L.; Ren, B.; Xu, X.; Tian, Z.-Q. Chem. J. Chin. Univ. 2008, 29, 2569.  doi: 10.3321/j.issn:0251-0790.2008.12.048

    27. [27]

      Zhang, J.; Li, X.; Sun, X.; Li, Y. J. Phys. Chem. B 2005, 109, 12544.  doi: 10.1021/jp050471d

    28. [28]

      Li, K. Y.; Fang, Z. L.; Xiong, S.; Luo, J. Mater. Technol. 2017, 32, 391.  doi: 10.1080/10667857.2016.1262309

    29. [29]

      Wang, M.; Yan, X.; Wei, D.-Q.; Liang, L.-J.; Wang, Y.-P. Acta Chim. Sinica 2019, 77, 184.
       

    30. [30]

      Jiang, J.; Zhu, L.; Zou, J.; Qu, Y.-L.; Zheng, A.; Tang, H. Carbon 2015, 87, 193.  doi: 10.1016/j.carbon.2015.02.025

    31. [31]

      Zhang, L.; Li, P.; Luo, L.; Bu, X.; Wang, X.; Zhao, B.; Tian, Y. Appl. Spectrosc. 2017, 71, 2395.  doi: 10.1177/0003702817711700

    32. [32]

      Zuo, F.-T.; Xu, W.; Zhao, A.-W. Acta Chim. Sinica 2019, 77, 379.  doi: 10.7503/cjcu20180485
       

    33. [33]

      Tian, H.; Zhang, N.; Tong, L.; Zhang, J. Small Methods 2017, 1, 1700126.  doi: 10.1002/smtd.201700126

    34. [34]

      López, Arbeloa. F.; López, Arbeloa. T.; Tapia, Estévez. M. J.; López, Arbeloa, I. J. Phys. Chem. 1991, 95, 2203.  doi: 10.1021/j100159a022

    35. [35]

      Lu, Q.-N.; Dorn, J.-M.; Berry, M.-T.; Jiang, C., Lin, C.; May, P.-S. J. Colloid Interface Sci. 2011, 356, 151.  doi: 10.1016/j.jcis.2010.12.077

    36. [36]

      Wang, H.-B. Sci. Technol. Food Ind. 2019, 11, 1002.

    37. [37]

      Lee, P. C.; Mei, S.-D. J. Phys. Chem. 1982, 86, 3391.  doi: 10.1021/j100214a025

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    4. [4]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    5. [5]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    9. [9]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    10. [10]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    16. [16]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    17. [17]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    18. [18]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    19. [19]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(18)
  • Abstract views(1512)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return