Citation: Ni Yuxin, Zhang Chenjie, Yuan Yaxian, Xu Minmin, Yao Jianlin. Determination on Origination of Surface Enhanced Raman Scattering Effect on Nano ZnO Substrate[J]. Acta Chimica Sinica, ;2019, 77(7): 641-646. doi: 10.6023/A19040156 shu

Determination on Origination of Surface Enhanced Raman Scattering Effect on Nano ZnO Substrate

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 30 April 2019
    Available Online: 20 July 2019

    Fund Project: the National Natural Science Foundation of China 21773166Project supported by the National Natural Science Foundation of China (Nos. 21773166, 21673152)the National Natural Science Foundation of China 21673152

Figures(4)

  • The promising application of surface-enhanced Raman spectroscopy (SERS) was definitely based on the high quality substrates which were restricted to the rough noble metals and colloidal nanoparticle materials. However, semiconductor has become a potential substrate for the SERS investigation due to its high stability and reproducibility. It remains significant challenges in interpreting the enhancement mechanisms. Herein, broom-like ZnO nanoparticles with novel morphology and uniform size was prepared by pyrolysis of (CH3COO)2Zn. By using p-nitrophenylthiophenol (PNTP), phenylthiophenol (TP) and p-aminophenylthiophenol (PATP) as probe molecules, the SERS effect on ZnO surfaces was systematically studied under the irradiation of excitation lines with the wavelength of 532 nm and 638 nm. The different substituents in p-position of TP allowed to change the energy levels by the electron withdrawing or donating group, it was beneficial to match the energy level gap between the probe molecules and semiconductor for triggering the photon driven charge transfer. The surface enhancement factor (EF) of broom-like ZnO nanoparticles were estimated accordingly, and the contribution of non-resonance and charge transfer to SERS effect was distinguished. The results demonstrated that the surface enhancement factor was about 10 to 35 times depending on the probe molecules and excitation wavelengths. Therefore, the different enhancement origination contributed to the different molecules on the ZnO substrate. For the TP and PATP, the charge transfer from the HOMO level of molecule to CB of ZnO was achieved by the assistance of the laser photon with the appropriate energy. Moreover, the higher energy of the photon is, the stronger the SERS enhancement effect. As for the PNTP, the photon driven charge transfer was absent due to the significant change of the HOMO and LUMO level caused by the electron withdrawing group of NO2. It revealed that the enhancement effect of PNTP molecule about 10 times was contributed by the non-resonance enhancement mechanism which was mainly due to the changes in the polarizability caused by the chemical adsorption. Comparing to the noble metal surface, the enhancement of charge transfer on ZnO was decreased with 1~2 orders of magnitude. The relatively lower rate of charge transfer in semiconductor resulted in the decrease of the charge transfer enhancement. The preliminary studies provided a novel approach for the preparation and regulation of new semiconductor SERS substrates.
  • 加载中
    1. [1]

      Halas, N. J.; Moskovits, M. MRS Bull. 2013, 38, 607.  doi: 10.1557/mrs.2013.156

    2. [2]

      Wang, M.; Yan, X.; Wei, D.; Liang, L.; Wang, Y. Acta Chim. Sinica 2019, 77, 184.
       

    3. [3]

      Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.

    4. [4]

      Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; van Duyne, R. R. Annu. Rev. Anal. Chem. 2008, 1, 601.  doi: 10.1146/annurev.anchem.1.031207.112814

    5. [5]

      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.  doi: 10.1021/cr200061k

    6. [6]

      Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.  doi: 10.1021/jp0760962

    7. [7]

      Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463.  doi: 10.1021/jp025970i

    8. [8]

      Zhao, L. L.; Jensen, L.; Schatz, G. C. J. Am. Chem. Soc. 2006, 128, 2911.  doi: 10.1021/ja0556326

    9. [9]

      Tian, Z. Q.; Ren, B. Annu. Rev. Phys. Chem. 2004, 55, 197.  doi: 10.1146/annurev.physchem.54.011002.103833

    10. [10]

      Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Chem. Soc. Rev. 2008, 37, 1025.  doi: 10.1039/b707872m

    11. [11]

      Wang, Y. F.; Ruan, W. D.; Zhang, J. H.; Yang, B.; Xu, W. Q.; Zhao, B.; Lombardi, J. R. J. Raman Spectrosc. 2009, 40, 1072.  doi: 10.1002/jrs.v40:8

    12. [12]

      Klingshirn, C.; Fallert, J.; Zhou, H.; Sartor, J.; Thiele, C.; Maier Flaig, F.; Schneider, D.; Kalt, H. Phys. Status Solidi B 2010, 247, 1424.  doi: 10.1002/pssb.v247:6

    13. [13]

      Yang, P. D.; Yan, R. X.; Fardy, M. Nano Lett. 2010, 10, 1529.  doi: 10.1021/nl100665r

    14. [14]

      Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Nat. Nanotechnol. 2011, 6, 506.  doi: 10.1038/nnano.2011.97

    15. [15]

      Zhao, D.; Zhang, X. X.; Dong, H. B.; Yang, L. J.; Zeng, Q. S.; Li, J. Z.; Cai, L.; Zhang, X.; Luan, P. S.; Zhang, Q.; Tu, M.; Wang, S.; Zhou, W. Y.; Xie, S. S. Nanoscale 2013, 5, 4443.  doi: 10.1039/c3nr00049d

    16. [16]

      Dorfman, A.; Kumar, N.; Hahm, J. Langmuir 2006, 22, 4890.  doi: 10.1021/la053270+

    17. [17]

      Wen, H.; He, T. J.; Xu, C. Y.; Zuo, J.; Liu, F. C. Mol. Phys. 1996, 88, 281.  doi: 10.1080/00268979609482416

    18. [18]

      Sun, Z. H.; Zhao, B.; Lombardi, J. R. Appl. Phys. Lett. 2007, 91, 221106.  doi: 10.1063/1.2817529

    19. [19]

      Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Angew. Chem., Int. Ed. 2017, 56, 9851.  doi: 10.1002/anie.201705187

    20. [20]

      Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Adv. Mater. 2016, 29, 1.

    21. [21]

      Yang, L. B.; Jiang, X.; Ruan, W. D.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. J. Phys. Chem. C 2008, 112, 20095.  doi: 10.1021/jp8074145

    22. [22]

      Dong, B.; Fang, Y. R.; Xia, L. X.; Xu, H. X.; Sun, M. T. J. Raman Spectrosc. 2011, 42, 1205.  doi: 10.1002/jrs.v42.6

    23. [23]

      Blum, C.; Opilik, L.; Atkin, J. M.; Braun, K.; Käemmer, S. B.; Kravtsov, V.; Kumar, N.; Lemeshko, S.; Li, J. F.; Luszcz, K.; Maleki, T.; Meixner, A. J.; Minne, S.; Raschke, M. B.; Ren, B.; Rogalski, J.; Roy, D.; Stephanidis, B.; Wang, X.; Zhang, D.; Zhong, J. H.; Zenobi, R. J. Raman Spectrosc. 2014, 45, 22.  doi: 10.1002/jrs.v45.1

    24. [24]

      Fang, Y. R.; Li, Y. Z.; Xu, H. X.; Sun, M. T. Langmuir 2010, 26, 7737.  doi: 10.1021/la904479q

    25. [25]

      Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. Langmuir 2016, 32, 4530.  doi: 10.1021/acs.langmuir.5b04393

    26. [26]

      Conway, E. B.; Mathieson, J.; Dhar, P. H. J. Phys. Chem. 1974, 78, 1226.  doi: 10.1021/j100605a018

    27. [27]

      Wei, H.; Luo, J. W.; Li, S. S.; Wang, L. W. J. Am. Chem. Soc. 2016, 138, 8165.  doi: 10.1021/jacs.6b03524

    28. [28]

      Tahir, M. N.; Natalio, F.; Cambaz, M. A.; Panthöfer, M.; Branscheid, R.; Kolb, U.; Tremel, W. Nanoscale 2013, 5, 9944.  doi: 10.1039/c3nr02817h

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    3. [3]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    6. [6]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    7. [7]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    16. [16]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    17. [17]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

Metrics
  • PDF Downloads(20)
  • Abstract views(2056)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return