Citation: Hai Man, Guo Li-Na, Wang Le, Duan Xin-Hua. Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols[J]. Acta Chimica Sinica, ;2019, 77(9): 895-900. doi: 10.6023/A19040155 shu

Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols

  • Corresponding author: Duan Xin-Hua, duanxh@xjtu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 21 September 2019

    Fund Project: Project supported by the Natural Science Foundation in Shaanxi Province (No. 2019JM-299)the Natural Science Foundation in Shaanxi Province 2019JM-299

Figures(4)

  • Substituted quinoxalin-2(1H)-ones represent an important class of fused heterocyclic compounds which are existing in numerous bioactive natural products, pharmaceuticals, and functional materials. As a result, there are many methods for the synthesis of this heterocyclic compounds over the past several years. In this context, the direct C-H functionalization of quinoxalin-2(1H)-ones have proved to be an effective protocol to diverse heterocycles, such as radical C(3)-H arylation, phosphonation, amination, and acylation of quinoxalin-2(1H)-ones. However, the direct C-H alkylation of quinoxalin-2(1H)-ones is still rare. Because of their importance, it is desirable to introduce alkyl substituents, especially those bearing functional groups, at the 3-position of quinoxalin-2(1H)-ones, which would probably promote their applications in new drug discovery and development. Thus, this article reports a visible light promoted C(3)-ketoalkylation of quinoxaline-2(1H)-ones via oxidative ring-opening of cycloalkanols. At room temperature, the reaction is carried out by using cycloalkanols as the ketoalkylating agent and potassium persulfate as oxidizing agent in a solution of methanol and water (V:V=1:2) for 16 h upon visible light irradiation. A variety of keto-functionalized alkyl moieties with different chain length have been successfully incorporated into the C(3)-position of quinoxalin-2(1H)-ones. Thus, the procedure provides a greener, environmentally friendly and simple method for the synthesis of quinoxalin-2(1H)-one derivatives. A representative procedure for this reaction is given as follows. An oven-dried quartz reaction tube (10 mL) equipped with a magnetic stir bar was charged with K2S2O8 (2.0 equiv., 0.4 mmol), quinoxalin-2(1H)-one 1 (1.0 equiv., 0.2 mmol) and cycloalkanol 2 (1.5 equiv., 0.3 mmol). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of 1.3 mL of H2O and 0.7 mL of MeOH were added under nitrogen. Then the reaction tube was sealed and was irradiated under blue light at room temperature for 16 h. After completion of the reaction, ethyl acetate was added to the reaction mixture, and washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate, V:V=4:1) affords the corresponding product.
  • 加载中
    1. [1]

      Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Handschuh, S.; Mihm, G.; Stassen, J. M.; Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2297.  doi: 10.1016/S0960-894X(03)00443-8

    2. [2]

      (a) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179. (b) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F. Drugs Future 2006, 31, 979. (c) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.-Z.; Wang, W.; Qin, X.-Y.; Yang, Y.-C.; Chen, X.; Zhu, S.-J.; Zhu, C.-J.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.

    3. [3]

      Buratti, W.; Gardini, G. P.; Minisci, F. Tetrahedron 1971, 27, 3655.  doi: 10.1016/S0040-4020(01)97776-2

    4. [4]

      For review, see: (a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201900977.For selected examples, see: (b) Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980. (c) Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343. (d) Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.

    5. [5]

      (a) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610. (b) Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. (c) Zhou, Z.; Ma, Z.; Behnke, N. E.; Gao, H.; Kurti, L. J. Am. Chem. Soc. 2017, 139, 115. (d) Wang, P.; Li, G. C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P. X.; Yu, J. Q. J. Am. Chem. Soc. 2016, 138, 14092.

    6. [6]

    7. [7]

      Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Org. Biomol. Chem. 2016, 52, 2846.
       

    8. [8]

      Li, Y.; Gao, M.; Wang, L.; Cui, X. Org. Biomol. Chem. 2016, 14, 8428.  doi: 10.1039/C6OB01283C

    9. [9]

      (a) Yuan, J.-W.; Fu, J.-H.; Liu, S.-N.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Biomol. Chem. 2018, 16, 3203. (b) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M. Sci. China, Chem. 2019, 62, 460.

    10. [10]

      Hong, G.-F.; Yuan, J.-W.; Fu, J.-H.; Pan, G.-Y.; Wang, Z.-W.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Zhang, X.-M. Org. Chem. Front. 2019, 6, 1173.  doi: 10.1039/C9QO00105K

    11. [11]

      (a) Yuan, J.-W.; Fu, J.-H.; Yin, J.-H.; Dong, Z.-H.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Chem. Front. 2018, 5, 2820. (b) Fu, J.-H.; Yuan, J.-W.; Zhang, Y.; Xiao, Y.-M.; Mao, P.; Diao, X.-Q.; Qu, L.-B. Org. Chem. Front. 2018, 5, 3382.

    12. [12]

      Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L.-N. Org. Lett. 2018, 20, 1034.  doi: 10.1021/acs.orglett.7b03984

    13. [13]

      Gu, Y.-R.; Duan, X.-H.; Chen, L.; Ma, Z.-Y.; Gao, P.; Guo, L.-N. Org. Lett. 2019, 21, 917.  doi: 10.1021/acs.orglett.8b03865

    14. [14]

      (a) Liu, R.; Huang, Z.-H.; Murray, M. G.; Guo, X.-Y.; Liu, G. J. Med. Chem. 2011, 54, 5747. (b) Qin, X.-Y.; Hao, X.; Han, H.; Zhu, S.-J.; Yang, Y.-C.; Wu, B.-B.; Hussain, S.; Parveen, S.; Jing, C.-J.; Ma, B.; Zhu, C.-J. J. Med. Chem. 2015, 58, 1254.

    15. [15]

      For review, see: (a) Wu, X.-X.; Zhu, C. Chem. Select. 2017, 2, 10678. For selected examples, see: (b) Ren, R.-G.; Zhao, H.-J.; Huan, L.-T.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692. (c) Zhao, H.-J.; Fan, X.-F.; Yu, J.-J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490. (d) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798. (e) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514. (f) Huan, L.-T.; Zhu, C. Org. Chem. Front. 2016, 3, 1467. (g) Guo, L.-N.; Deng, Z.-Q.; Wu, Y.; Hu, J. RSC Adv. 2016, 6, 27000. (h) Ren, R.-G.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866. (i) Nikolaev, A.; Legault, C. Y.; Zhang, M.-H.; Orellana, A. Org. Lett. 2018, 20, 796. (j) Zhao, R.; Yao, Y.; Zhu, D.; Chang, D.-H.; Liu, Y.; Shi, L. Org. Lett. 2018, 20, 1228.

    16. [16]

    17. [17]

      For selected examples, see: (a) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27. (b) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667. (c) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128. (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988. (e) Li, Y.-M.; Shen, Y.-H.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991. (f) Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N. Chem. Commun. 2016, 52, 10245.

    18. [18]

      (a) Devan, S.; Shah, B.-A. Chem. Commun. 2016, 52, 1490. (b) Zhang, Y.-Q.; Teuscher, K. B.; Ji, H.-T. Chem. Sci. 2016, 7, 2111. (c) Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326. (d) Meyer, A. U.; Alexander, W.; K nig, B. Angew. Chem., Int. Ed. 2017, 56, 409.

  • 加载中
    1. [1]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(17)
  • Abstract views(1734)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return