Citation:
Wang Yongsheng, Zhao Yunlu, Zhao Zhenzhen, Lan Xiaolin, Xu Jinxia, Xu Weixiang, Duan Zhengkang. Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance[J]. Acta Chimica Sinica,
;2019, 77(7): 661-668.
doi:
10.6023/A19040124
-
Glyphosate is one of the most widely used herbicides in the world. Current production of glyphosate starts with iminodiacetic acid (IDA). One method of producing IDA starts with the catalytic dehydrogenation of diethanolamine (DEA) using Cu-ZrO2 (CZ), which is a fairly simple, pollution-free, and cost-effective process. The Cu-ZrO2 catalysts used in this dehydrogenation are fairly efficient and inexpensive, but they tend to agglomerate and inactivate. The development of highly efficient and stable Cu-ZrO2 catalyst is of great significance. Carbon coated nano-metal particles are a new type of nano-carbon/metal composite materials. Metal materials can be imparted in a small space due to the surface acidity and alkalinity of carbon coated materials and their unique structural characteristics, which is of great significance for the dispersion and oxidation resistance of the loaded nano-metal materials. In this study, melamine was used as a carbon source and a nitrogen source to prepare a Cu-ZrO2 nanocatalyst (CZ@CN catalyst) coated with nitrogen-doped carbon (CN) with core-shell structure. The effect of different molar ratios of copper and melamine on the catalyst was studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physical adsorption and desorption test (BET), H2 temperature-programmed reduction (H2-TPR) were used to investigate the morphology and structure of the catalyst. The catalytic performance of the catalyst for the dehydrogenation of diethanolamine was investigated. When the molar ratio of copper to melamine is 4:1, the prepared CZ@CN-1 catalyst has the highest catalytic activity. The yield of sodium iminodiacetic acid is 92.80%, and the reaction time is shorter than that of ordinary CZ catalyst by 40%. The yield of sodium iminodiacetic acid still reaches 88.45% after reusing 8 times. The results showed that the introduction of the CN layer makes the catalyst exhibit more Lewis basicity. Meanwhile, it is beneficial to the activation of hydroxyl groups and the transfer of hydrogen in the dehydrogenation reaction. The CN layer can also stabilize copper nanoparticles and improve the stability of the catalyst.
-
-
-
[1]
Zhu, Y.; Kong, X.; Li, X.; Ding, G.; Zhu, Y.; Li, Y. W. ACS Catal. 2014, 4, 3612. doi: 10.1021/cs5009283
-
[2]
Duan, Z. K.; Li, S.; Xie, F.; Yan, J. H.; Zhang, T. Chem. Res. Appl. 2015, 27, 417. doi: 10.3969/j.issn.1004-1656.2015.04.001
-
[3]
Tang, Q. L.; Liu, Z. P. J. Phys. Chem. 2010, 114, 8423. doi: 10.1021/jp104246k
-
[4]
Agrell, J.; Birgersson, H.; Boutonnet, M.; Melián-Cabrera, I.; Navarro, R. M.; Fierro, J. L. G. J. Catal. 2003, 219, 389. doi: 10.1016/S0021-9517(03)00221-5
-
[5]
Huo, J. P.; Song, H. H.; Chen, X. H.; Zhao, S. Q.; Xu, C. M. Carbon Techniques. 2006, 25, 22.
-
[6]
Liu, J. Y.; Yang, P. J.; Zhang, J. F.; Ma, S. J. Petrochem. Technol. 2004, 33, 330. doi: 10.3321/j.issn:1000-8144.2004.04.008
-
[7]
Li, H. T.; Chen, H. R.; Zhang, Y.; Gao, C. G.; Zhao, Y. X. Chinese J. Catal. 2011, 32, 111.
-
[8]
Roy, R. K.; Lee, K. J. Biomed. Mater. Res. B 2010, 83B, 72.
-
[9]
Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2019, 77, 60. doi: 10.3969/j.issn.0253-2409.2019.01.008
-
[10]
Su, D. S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X.; Parak-nowitsch, J.; Schlögl, R. ChemSusChem 2010, 3, 169. doi: 10.1002/cssc.v3:2
-
[11]
Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Appl. Nanosci. 2011, 1, 67. doi: 10.1007/s13204-011-0013-4
-
[12]
Dai, X. Q.; Zhu, Y. B.; Xu, X. L.; Wen, J. Q. Chin. J. Org. Chem. 2017, 37, 577.
-
[13]
Watanabe, H.; Asano, S.; Fujita, S.; Yoshida, H.; Arai, M. ACS Catal. 2015, 5, 2886. doi: 10.1021/acscatal.5b00375
-
[14]
Zhang, P.; Wang, Q. N.; Yang, X.; Wang, D.; Li, W. C.; Zheng, Y. P.; Chen, M. S.; Lu, A. H. ChemCatChem 2017, 9, 505. doi: 10.1002/cctc.v9.3
-
[15]
Shi, R. N.; Zhao, J. X.; Liu, S. S.; Sun, W.; Li, H. X.; Hao, P. P.; Li, Z.; Ren, J. Carbon 2018, 130, 185. doi: 10.1016/j.carbon.2018.01.011
-
[16]
Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743. doi: 10.1002/(ISSN)1521-4095
-
[17]
Unnikrishnan, P.; Srinivas, D. Ind. Eng. Chem. Res. 2012, 51, 6356. doi: 10.1021/ie300678p
-
[18]
Hu, Q.; Yang, L.; Fan, G. L.; Li, F. Chem. Nano. Mat. 2016, 2, 888.
-
[19]
Wang, J.; Lei, Z.; Qin, H.; Zhang, L.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 7120. doi: 10.1021/ie2000264
-
[20]
Hu, Q.; Fan, G.; Yang, L.; Cao, X.; Zhang, P.; Wang, B.; Li, F. Green Chem. 2016, 18, 2317. doi: 10.1039/C5GC02924D
-
[21]
Xu, J.; Shen, K.; Xue, B. J. Mol. Cayal. A 2013, 372, 105. doi: 10.1016/j.molcata.2013.02.019
-
[22]
ABUDUHEIREMU, Awati; Zhang, D. D.; HALIDAN, Maimaiti Chem. J. Chin. Univ. 2019, 40, 306. doi: 10.7503/cjcu20180597
-
[23]
Chen, S.; Bi, J.; Zhao, L.; Yang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593. doi: 10.1002/adma.201202424
-
[24]
Sharitfi, T.; Hu, G.; Jia, X.; Wagberg, T. ACS Nano 2012, 6, 8904. doi: 10.1021/nn302906r
-
[25]
Wang, X. X.; Zhang, L. H.; Lin, H. J.; Nong, Q. Y.; Wu, Y.; Wu, T. H.; He, Y. M. RSC Adv. 2014, 4, 40029. doi: 10.1039/C4RA06035K
-
[26]
Yang, Y.; Duan, Z.; Liu, W. Chem. Reac. Eng. Technol. 2001, 17, 210.
-
[27]
Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Nat. Chem. 2013, 5, 122. doi: 10.1038/nchem.1536
-
[28]
Neurock, M.; Tao, Z.; Chemburkar, A.; Hibbitts, D. D.; Lglesia, E. Faraday Discuss. 2017, 197, 181.
-
[1]
-
-
-
[1]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[2]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[3]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
-
[4]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[5]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[6]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[7]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
-
[8]
Yachao HUANG , Chuanwang ZENG , Guiyong LIU , Jinming ZENG , Chao LIU , Xiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133
-
[9]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[10]
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
-
[11]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[12]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[13]
Haotong Ma , Mingyu Heng , Yang Xu , Wei Bi , Yingchun Miao , Shuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132
-
[14]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[15]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[16]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[17]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[18]
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
-
[19]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[20]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135
-
[1]
Metrics
- PDF Downloads(14)
- Abstract views(2177)
- HTML views(230)
Login In
DownLoad: