Citation: Wu Wenjun, Xin Chenghao, Pang Zhihan, Xu Liang, Li Chen. Dimethylammonium Iodide: Boosting Photocurrent for Dye-sensitized Solar Cells with Perovskite Precursors Electrolyte[J]. Acta Chimica Sinica, ;2019, 77(6): 545-550. doi: 10.6023/A19020058 shu

Dimethylammonium Iodide: Boosting Photocurrent for Dye-sensitized Solar Cells with Perovskite Precursors Electrolyte

  • Corresponding author: Wu Wenjun, wjwu@ecust.edu.cn
  • Received Date: 3 February 2019
    Available Online: 9 June 2019

    Fund Project: the Scientific Committee of Shanghai 18160723400the National Natural Science Foundation of China 21676087Project supported by the National Natural Science Foundation of China (No. 21676087) and the Scientific Committee of Shanghai (No. 18160723400)

Figures(7)

  • As a typical representative of the third-generation solar cell, the dye-sensitized solar cells (DSSCs) with iodine electrolyte have attracted much attention due to its low fabrication cost, simple assembly process and relatively high photoelectric conversion efficiency (PCE). However, all studies about electrolytes are essentially related to redox couples of iodine, cobalt and copper with different chemical valences by far. Based on above systems, it is difficult to continually enhance the photocurrent of DSSCs due to the energy level tunability limitation between the redox potential and the dye regeneration. However, the study of perovskite precursor (PbI2 and CH3NH3I) as dye-sensitized solar cell electrolyte has just started, and its specific mechanism is still unclear. As the newly-presented electrolyte of dye-sensitized solar cells, its development bottleneck of photocurrent and photovoltage is an urgent issue to be solved. Herein, dimethylammonium iodide (DMAI) was introduced as a high-efficiency additive for the perovskite precursors electrolyte and the photocurrent is sharply increased from 12.85 mA·cm-2 to 19.19 mA·cm-2. The electron transfer process was preliminary studied in this system via chemical capacitance, electron lifetime, charge transfer impedance, and Tafel curve. The Tafel curve test is based on the dummy cell with Pt|electrolyte|Pt device structure, and the others on the completed cells. In particular, the results of chemical capacitance show that the addition of DMAI obviously leads to the upward shift of the TiO2 conduction band. It is found that the increase in photocurrent is attributed to the inhibition of the electron recombination caused by unbalanced carriers due to the upward shift of the TiO2 semiconductor conduction band. By the modulation action of tert-butylpyridine (TBP), the photoelectric conversion efficiency was increased to 8.46% over the iodine system. It lays a solid foundation for the expansion of the dye-sensitized solar cell electrolyte system, the sustainable improvement of its performance and future application.
  • 加载中
    1. [1]

      Wang, P.; Yang, L.; Wu, H.; Cao, Y. M.; Zhang, J.; Xu, N. S.; Chen, S.; Decoppet, J. D.; Zakeeruddin, S. M.; Grätzel, M. Joule 2018, 2, 1.  doi: 10.1016/j.joule.2017.10.014

    2. [2]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    3. [3]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    4. [4]

      Yao, Z. Y.; Zhang, M.; Wu, H.; Yang, L.; Li, R. Z.; Wang, P. J. Am. Chem. Soc. 2015, 137, 3799.  doi: 10.1021/jacs.5b01537

    5. [5]

      Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 2973.  doi: 10.1002/anie.v53.11

    6. [6]

      Chandiran, A. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M.; Sauvage, F. ChemPhysChem 2017, 18, 2724.  doi: 10.1002/cphc.201700486

    7. [7]

      Liu, Y. H.; Cao, Y. M.; Zhang, W. W.; Stojanovic, M.; Dar, M. I.; Péchy, P.; Saygili, Y.; Hagfeldt, A.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem., Int. Ed. 2018, 57, 14125.  doi: 10.1002/anie.201808609

    8. [8]

      Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H.; Bao, X. H. Angew. Chem., Int. Ed. 2016, 55, 6708.  doi: 10.1002/anie.201602097

    9. [9]

      Zheng, X. J.; Deng, J.; Wang, N.; Deng, D. H.; Zhang, W. H.; Bao, X. H.; Li, C. Angew. Chem., Int. Ed. 2014, 53, 7023.  doi: 10.1002/anie.201400388

    10. [10]

      Liu, T.; Yu, K.; Gao, L. N.; Chen, H.; Wang, N.; Hao, L. H.; Li, T. X.; He, H. C.; Guo, Z. H. J. Mater. Chem. A 2017, 5, 17848.  doi: 10.1039/C7TA05123A

    11. [11]

      Yun, S.; Hagfeldt, A.; Ma, T. L. Adv. Mater. 2014, 26, 6210.  doi: 10.1002/adma.201402056

    12. [12]

      Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Angew. Chem., Int. Ed. 2015, 54, 11448.  doi: 10.1002/anie.201505339

    13. [13]

      Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J.; Wang, D. Adv. Energy Mater. 2015, 5, 1500296-1.

    14. [14]

      Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.  doi: 10.1021/nl062000o

    15. [15]

      Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.  doi: 10.1002/anie.v48:14

    16. [16]

      Xie, Y. S.; Tang, Y. Y.; Wu, W. J.; Wang, Y. Q.; Liu, J. C.; Li, X.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2015, 137, 14055.  doi: 10.1021/jacs.5b09665

    17. [17]

      Wang, H. X.; Li, H.; Xue, B. F.; Wang, Z. X.; Meng, Q. B.; Chen, L. Q. J. Am. Chem. Soc. 2005, 127, 6394.  doi: 10.1021/ja043268p

    18. [18]

      Yella, A.; Mathew, S.; Aghazada, S.; Comte, P.; Grätzel, M.; Nazeeruddin, M. K. J. Mater. Chem. C 2017, 5, 2833.  doi: 10.1039/C6TC05640G

    19. [19]

      Higashino, T.; Kurumisawa, Y.; Cai, N.; Fujimori, Y.; Tsuji, Y.; Nimura, S.; Packwood, D. M.; Park, J.; Imahori, H. ChemSusChem 2017, 10, 3347.  doi: 10.1002/cssc.201701157

    20. [20]

      Gu, A.; Xiang, W. C.; Wang, T. S.; Gu, S. X.; Zhao, X. J. Solar Energy 2017, 147, 126.  doi: 10.1016/j.solener.2017.03.045

    21. [21]

      Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X. Y.; Giordano, F.; Liska, P.; Hua, J. L.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M.; Hagfeldt, A. Nat. Photonics 2017, 11, 372.  doi: 10.1038/nphoton.2017.60

    22. [22]

      Cao, Y. M.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J. S.; Pellet, N.; Giordano, F.; Zakeeruddin, S. M.; Moser, J. E.; Freitag, M.; Hagfeldt, A.; Grätzel, M. Nat. Commun. 2017, 8, 15390-1.

    23. [23]

      Zhang, W. W.; Wu, Y. Z.; Bahng, H. W.; Cao, Y. M.; Yi, C. Y.; Saygili, Y.; Luo, J. S.; Liu, Y. H.; Kavan, L.; Moser, J. E.; Hagfeldt, A.; Tian, H.; Zakeeruddin, S. M.; Zhu, W. H.; Grätzel, M. Energy Environ. Sci. 2018, 11, 1779.  doi: 10.1039/C8EE00661J

    24. [24]

      Chen, S.; Hou, Y.; Chen, H.; Richter, M.; Guo, F.; Kahmann, S.; Tang, X.; Stubhan, T.; Zhang, H.; Li, N.; Gasparini, N.; Quiroz, C. O. R.; Khanzada, L. S.; Matt, G. J.; Osvet, A.; Brabec, C. J. Adv. Energy Mater. 2016, 6, 1600132-1.

    25. [25]

      Jiang, L. L.; Wang, Z. K.; Li, M.; Li, C. H.; Fang, P. F.; Liao, L. S. Solar RRL 2018, 1800149-1.

    26. [26]

      Luo, D.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J.; Liu, T. H.; Chen, K.; Ye, F. J.; Wu, P.; Zhao, L. C.; Wu, J.; Tu, Y. G.; Zhang, Y. F.; Yang, X. Y.; Zhang, W.; Friend, R. H.; Gong, Q. H.; Snaith, H. J.; Zhu, R. Science 2018, 360, 1442.  doi: 10.1126/science.aap9282

    27. [27]

      Ryu, U.; Jee, S.; Park, J. S.; Han, I. K.; Lee, J. H.; Park, M.; Choi, K. M. ACS Nano 2018, 12, 4968.  doi: 10.1021/acsnano.8b02079

    28. [28]

      Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Nat. Energy 2018, 3, 560.  doi: 10.1038/s41560-018-0153-9

    29. [29]

      Li, C. P.; Lv, X. D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.v37.1

    30. [30]

      Yan, K. R.; Liu, Z. X.; Li, X.; Chen, J. H.; Chen, H. Z.; Li, C. Z. Org. Chem. Front. 2018, 5, 2845.  doi: 10.1039/C8QO00788H

    31. [31]

      Yang, Y.; Chen, T.; Pan, D. Q.; Zhang, Z.; Guo, X. Y. Acta Chim. Sinica 2018, 76, 681(in Chinese).  doi: 10.7503/cjcu20170596
       

    32. [32]

      Wu, M. M.; Liu, S. Q.; Chen, H.; Wei, X. H.; Li, M. Y.; Yang, Z. B.; Ma, X. D. Acta Chim. Sinica 2018, 76, 49(in Chinese).  doi: 10.3866/PKU.WHXB201707041
       

    33. [33]

      Sun, W. H.; Li, Y. L.; Yan, W. B.; Peng, H. T.; Ye, S. Y.; Rao, H. X.; Zhao, Z. R.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. Chin. J. Chem. 2017, 35, 687.  doi: 10.1002/cjoc.v35.5

    34. [34]

      Li, C. P.; Lv, X. D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.v37.1

    35. [35]

      Yan, K. R.; Liu, Z. X.; Li, X.; Chen, J. H.; Chen, H. Z.; Li, C. Z. Org. Chem. Front. 2018, 5, 2845.  doi: 10.1039/C8QO00788H

    36. [36]

      Zhang, D.; Cui, B. B.; Zhou, C.; Li, L.; Chen, Y.; Zhou, N.; Xu, Z.; Li, Y.; Zhou, H.; Chen, Q. Chem. Commun. 2017, 53, 10548.  doi: 10.1039/C7CC05590K

    37. [37]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    38. [38]

      Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088.  doi: 10.1039/c1nr10867k

    39. [39]

      Wang, Q.; Yun, J. H.; Zhang, M.; Chen, H. J.; Chen, Z. G.; Wang, L. Z. J. Mater. Chem. A 2014, 2, 10355.  doi: 10.1039/c4ta01105h

    40. [40]

      Yang, J. B.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y. J.; Yi, C. Y.; Comte, P.; Pei, K.; Holcombe, T. W.; Nazeeruddin, M. K.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Grätzel, M. J. Am. Chem. Soc. 2014, 136, 5722.  doi: 10.1021/ja500280r

    41. [41]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    42. [42]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    43. [43]

      Li, X. M.; Bai, J. W.; Zhou, B.; Yuan, X. F.; Zhang, X.; Liu, L. Chem. Eur. J. 2018, 24, 11444.  doi: 10.1002/chem.v24.44

    44. [44]

      Jin, B. B.; Zhang, G. Q.; Kong, S. Y.; Quan, X.; Huang, H. S.; Liu, Y.; Zeng, J. H.; Wang, Y. F. J. Mater. Chem. C 2018, 6, 6823.  doi: 10.1039/C8TC02067A

    45. [45]

      Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. J. Mater. Chem. A 2015, 3, 5368.  doi: 10.1039/C4TA06393G

    46. [46]

      Xing, P.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Wang, K.; Kaliaguine, S. J. Membr. Sci. 2004, 229, 95.  doi: 10.1016/j.memsci.2003.09.019

    47. [47]

      Boschloo, G.; Häggman, L.; Hagfeldt, A. J. Phys. Chem. B 2006, 110, 13144.  doi: 10.1021/jp0619641

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    4. [4]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    5. [5]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    13. [13]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    16. [16]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    17. [17]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

Metrics
  • PDF Downloads(27)
  • Abstract views(1161)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return