Citation: Liu Shengwei, Zhao Jianjun, Xu Yiming. Larger Adsorption Effect of Fluoride than Phosphate on Phenol Degradation over the Irradiated Anatase TiO2 and Pt/TiO2[J]. Acta Chimica Sinica, ;2019, 77(4): 351-357. doi: 10.6023/A19010009 shu

Larger Adsorption Effect of Fluoride than Phosphate on Phenol Degradation over the Irradiated Anatase TiO2 and Pt/TiO2

  • Corresponding author: Xu Yiming, xuym@zju.edu.cn
  • Received Date: 4 January 2019
    Available Online: 5 April 2019

    Fund Project: the Funds for Creative Research Group of NSFC 21621005Project supported by the Funds for Creative Research Group of NSFC (No. 21621005)

Figures(6)

  • It is known that fluoride and phosphate in aqueous solution can accelerate the photocatalytic degradation of phenol over anatase or P25 TiO2. But the mechanism still remains under debate. In this work, an anion-free anatase TiO2 is prepared, followed by deposition with 0.52 wt% Pt (Pt/TiO2). Reaction was performed in aqueous solution at initial pH 5.2, where 99% of anions were in the form of F- or H2PO4-. On the addition of 0.1~30 mmol/L anions, the rate constants of phenol degradation (kobs) were all increased, confirming the positive effect of fluoride and phosphate, respectively. Interestingly, there was a linear relationship between the increase of kobs and the amounts of anion adsorption, the slope of which became larger in the order of fluoride>phosphate, and Pt/TiO2>TiO2. These observations indicate that the positive effect of anions originates from the adsorbed anions on solid, and that fluoride was more active than phosphate. A (photo)electrochemical measurement showed that fluoride and phosphate were negative and positive, respectively, to O2 reduction, but they were all beneficial to phenol oxidation. Furthermore, in the presence of fluoride and phosphate, the flat band potentials of TiO2 were shifted by -159 and 89 mV, respectively. The former favors orbital overlapping of phenol with TiO2 valence band, and the latter favors orbital overlapping of O2 with TiO2 conduction band, all of which promotes the interfacial charge transfers. Since inorganic anions are widely present, this result would benefit the mechanism study of a semiconductor photocatalyis and its application. As a reference, pure anatase was prepared from the hydrolysis of tetrabutyl titanate, followed by calcination in air at 400℃ for 2 h. The solid was then deposited with Pt, produced in situ from the photocatalytic reduction of H2PtCl6 in the presence of methanol. Solid was characterized with X-ray diffraction, N2 adsorption, Raman, and X-ray photoelectron spectroscopy. After Pt deposition, anatase phase remained unchanged, but the solid pores were blocked by a mixture of Pt and PtO2. Photoreactions were performed at room temperature under UV light at wavelengths equal to and longer than 320 nm. Organic compounds and inorganic anions were quantitatively analyzed with a high performance liquid and ionic chromatography, respectively. (Photo)electrochemical measurement was performed in a three-electrode compartment, where a Pt gauze was used as counter electrode, and a AgCl/Ag as reference electrode.
  • 加载中
    1. [1]

      Wu, J. J.; Ji, Z. Y.; Shen, X. P.; Miao, X. L.; Xu, K. Q. Acta Chim. Sinica 2017, 75, 1207.
       

    2. [2]

      Du, P. J.; Su, T. M.; Luo, X.; Zhou, X. T.; Qin, Z. Z.; Ji, H. B.; Chen, J. H. Chin. J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    3. [3]

      Chai, Y. Y.; Liu, Q. Q.; Zhang, L.; Ren, J.; Dai, W. L. Chin. J. Chem. 2017, 35, 173.  doi: 10.1002/cjoc.v35.2

    4. [4]

      Zhang, F. L.; Duan, F.; Ding, Z. G.; Chen, M. Q. Chin. J. Chem. 2017, 35, 226.  doi: 10.1002/cjoc.v35.2

    5. [5]

      Hoffmann, M.; Martin, S.; Choi, W.; W. Bahnemann, D. W. Chem. Rev. 1995, 95, 69.  doi: 10.1021/cr00033a004

    6. [6]

      Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2007, 111, 5259.

    7. [7]

      Zielińska-Jurek, A.; Zaleska, A. Catal. Today 2014, 230, 104.  doi: 10.1016/j.cattod.2013.11.044

    8. [8]

      Chen, K. T.; Lu, C. S.; Chang, T. H.; Lai, Y. Y.; Chang, T. H.; Wu, C. W.; Chen, C. C. J. Hazard. Mater. 2010, 174, 598.  doi: 10.1016/j.jhazmat.2009.09.094

    9. [9]

      Chiang, K.; Amal, R.; Tran, T. J. Mol. Catal. A:Chem. 2003, 193, 285.  doi: 10.1016/S1381-1169(02)00512-5

    10. [10]

      Kumar, A.; Mathur, N. J. Colloid Interf. Sci. 2006, 300, 244.  doi: 10.1016/j.jcis.2006.03.046

    11. [11]

      Lv, K. L.; Li, X. F.; Deng, K. J.; Sun, J.; Li, X. H.; Li, M. Appl.Catal. B:Environ 2010, 95, 383.  doi: 10.1016/j.apcatb.2010.01.017

    12. [12]

      Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.  doi: 10.1021/la9903301

    13. [13]

      Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  doi: 10.1021/la0005863

    14. [14]

      Vohra, M. S.; Kim, S.; Choi, W. J. Photochem. Photobiol., A:Chem. 2003, 160, 55.  doi: 10.1016/S1010-6030(03)00221-1

    15. [15]

      Park, H.; Choi, W. J. Phys. Chem. B 2004, 108, 4086.  doi: 10.1021/jp036735i

    16. [16]

      Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C. Chem. Mater. 2003, 15, 2280.  doi: 10.1021/cm0340781

    17. [17]

      Zhao, D.; Chen, C. C.; Wang, Y. F.; Ji, H. W.; Ma, W. H.; Zang, L.; Zhao, J. C. J. Phys. Chem. C 2008, 112, 5993.  doi: 10.1021/jp712049c

    18. [18]

      Zhang, X.; Xiong, X. Q.; Xu, Y. M. RSC Adv. 2016, 6, 61830.  doi: 10.1039/C6RA10291C

    19. [19]

      Xiong, X. Q.; Xu, Y. M. J. Phys. Chem. C 2016, 120, 3906.

    20. [20]

      Xiong, X. Q.; Zhang, X.; Xu, Y. M. J. Phys. Chem. C 2016, 120, 25689.  doi: 10.1021/acs.jpcc.6b07951

    21. [21]

      Mathpal, M. C.; Tripathi, A. K.; Singh, M. K; Gairola, S. P.; Pandey, S. N.; Agarwal, A. Chem. Phys. Lett. 2013, 555, 182.  doi: 10.1016/j.cplett.2012.10.082

    22. [22]

      Choi, H. C.; Jung, Y. M.; Kim, S. B. Vib. Spectrosc. 2005, 37, 33.  doi: 10.1016/j.vibspec.2004.05.006

    23. [23]

      Li, F. B.; Li, X. Z. Chemosphere 2002, 48, 1103.  doi: 10.1016/S0045-6535(02)00201-1

    24. [24]

      Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Environ. Sci. Technol. 2013, 47, 2777.  doi: 10.1021/es3045949

    25. [25]

      Yu, J. G.; Qi, L. F.; Jaroniec, M. J. Phys. Chem. C 2010, 114, 13118.  doi: 10.1021/jp104488b

    26. [26]

      Vorontsov, A. V.; Savinov, E. N.; Zhensheng, J. J. Photochem. Photobiol., A:Chem. 1999, 125, 113.  doi: 10.1016/S1010-6030(99)00073-8

    27. [27]

      Cao, Y.; Jing, L.; Shi, X.; Luan, Y.; Durrant, J. R.; Tang, J.; Fu, H. Phys. Chem. Chem. Phys. 2012, 14, 8530.  doi: 10.1039/c2cp41167a

    28. [28]

      Minella, M.; Maurino, V.; Minero, C.; Pelizzetti, E. J. Nanosci. Nanotechnol. 2015, 15, 3348.  doi: 10.1166/jnn.2015.10206

    29. [29]

      Nelson, B. P.; Candal, R.; Corn, R. M.; Anderson, M. A. Langmuir 2000, 16, 6094.  doi: 10.1021/la9911584

    30. [30]

      Li, S. F.; Ye, G. L.; Chen, G. Q. J. Phys. Chem. C 2009, 113, 4031.

    31. [31]

      Kim, J.; Lee, C. W.; Choi, W. Environ. Sci. Technol. 2010, 44, 6849.  doi: 10.1021/es101981r

    32. [32]

      Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 2005, 80, 3157.  doi: 10.1111/j.1151-2916.1997.tb03245.x

    33. [33]

      Topoglidis, E.; Lutz, T.; Willis, R. L.; Barnett, C. J.; Cass, A. E. G.; Durrant, J. R. Faraday Discuss. 2000, 116, 35.  doi: 10.1039/b003313h

    34. [34]

      Willis, R. L.; Olson, C.; O'Regan, B.; Lutz, T.; Nelson, J.; Durrant, J. R. J. Phys. Chem. B 2002, 106, 7605.  doi: 10.1021/jp020231n

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    3. [3]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    17. [17]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

Metrics
  • PDF Downloads(9)
  • Abstract views(1718)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return