Citation: Wang Yilin, Wang Minjie, Li Jing, Wei Zidong. Iron/nickel Alloy Nanoparticles Embedded in N-doped Porous Carbon for Robust Oxygen Evolution Reaction[J]. Acta Chimica Sinica, ;2019, 77(1): 84-89. doi: 10.6023/A18080357 shu

Iron/nickel Alloy Nanoparticles Embedded in N-doped Porous Carbon for Robust Oxygen Evolution Reaction

  • Corresponding author: Li Jing, lijing@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
  • Received Date: 30 August 2018
    Available Online: 27 January 2018

    Fund Project: the National Key Research and Development Program of China 2016YFB0101202Project supported by the National Key Research and Development Program of China (No. 2016YFB0101202) and the National Natural Science Foundation of China (Nos. 91534205, 21436003)the National Natural Science Foundation of China 91534205the National Natural Science Foundation of China 21436003

Figures(7)

  • Hydrogen, a clean, efficient and sustainable energy, can be produced via electrochemical water splitting, during which two key processes, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), occur simultaneously at the two electrodes of an electrolytic cell. Nevertheless compared to the two-electron process of HER, OER, a four-electron process, is of the inherently kinetic hysteresis step, which can dramatically diminish the overall energy conversion efficiency. The highly active noble-metal-based catalyst RuO2 is considered to be one of the most efficient state-of-the-art OER catalysts. However the high cost and element scarcity significantly hinder their practical applications. Thus it is particularly urgent to develop highly-active but low-cost non-noble-metal alternatives. Iron/nickel alloy based catalysts have been widely studied owing to their promising performances. In this work, we prepared iron/nickel alloy nanoparticles embedded in N-doped hierarchically porous carbon (Fe0.64Ni0.36@NC), by simultaneously adsorbing metal precursors and dopamine on surface of SiO2 macroporous hard templates, and then annealing the system and etching the templates. In electrochemical measurements, Fe0.64Ni0.36@NC shows a superior OER activity in alkaline solution, which only needs an overpotential as low as 286 mV to deliver a current density of 10 mA·cm-2, being significantly lower than the value of 380 mV for RuO2. Besides, the catalyst displays no obvious activity decrease after 2000 cycles of continuous CV scanning, corresponding to an excellent durability. The observed nice performances of the alloy catalyst in alkaline solution can be ascribed to two critical structural features:(1) the macroporous structures made by stacking of SiO2 microspheres own relatively thin layer of carbon framework, thus the embedded iron/nickel alloy particles can well activate the surrounding carbon layer to expose copious active sites; (2) the graphitized N-doped carbon layers well protect the alloy nanoparticles from corrosion, thus improving the durability of the catalysts. This work gave a nice design for the highly efficient non-noble-metal OER catalysts.
  • 加载中
    1. [1]

      Armaroli, N.; Balzani, V. Angew. Chem., Int. Ed. 2007, 46, 52.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ding, W.; Zhang, X.; Li, L.; Wei, Z. D. J. Electrochem. 2014, 20, 426 (in Chinese).
       

    3. [3]

      Peng, L. S.; Wei, Z. D. Chinese J. Catal. 2018, 39, 1575 (in Chinese).
       

    4. [4]

      Villa, I.; Villa, C.; Monguzzi, A.; Babin, V.; Tervoort, E.; Nikl, M.; Niederberger, M.; Torrente, Y.; Vedda, A.; Lauria, A. Nanoscale 2018, 10, 7933.  doi: 10.1039/C8NR00724A

    5. [5]

      Zhang, C.; Zhang, M. R.; Shi, H. Y.; Wang, J. P.; Niu, J. Y. Chem. Commun. 2018, 54, 5458.  doi: 10.1039/C8CC01622D

    6. [6]

      Guo, Y.; Yao, Y.; Li, H.; He, L. L.; Yang, Z. Z.; Zhao, D. X. Acta Chim. Sinica 2017, 75, 903 (in Chinese).  doi: 10.3866/PKU.WHXB201702091
       

    7. [7]

      Zuo, L. X.; Jiang, L.; Zhu, J. J. Chin. J. Chem. 2017, 35, 969.  doi: 10.1002/cjoc.v35.6

    8. [8]

      Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.  doi: 10.1039/C4CS00448E

    9. [9]

      Wang, S. L.; Wang, L. P.; Zhang, Z. H. Acta Phys.-Chim. Sin.2013, 29, 981 (in Chinese).  doi: 10.3866/PKU.WHXB201303071

    10. [10]

      Wang, J.; Wei, Z. D. Acta Phys.-Chim. Sin. 2017, 33, 886 (in Chinese).  doi: 10.3866/PKU.WHXB201702092

    11. [11]

      Peng, L. S.; Wei, Z. D. Prog. Chem. 2018, 30, 14 (in Chinese).  doi: 10.7536/PC170912

    12. [12]

      Luo, J. L. Acta Phys.-Chim. Sin. 2018, 34, 7 (in Chinese).  doi: 10.3866/PKU.WHXB201707051

    13. [13]

      Zhang, Y.; Shimoda, K.; Miyaoka, H. Int. J. Hydrogen Energy 2010, 35, 12405.  doi: 10.1016/j.ijhydene.2010.08.018

    14. [14]

      Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H. J. Am. Chem. Soc. 2005, 127, 5308.  doi: 10.1021/ja0504690

    15. [15]

      Lee, Y.; Jin, S.; May, K. J.; Perry, E. E.; Yang, S. H. J. Phys. Chem. Lett. 2012, 3, 399.  doi: 10.1021/jz2016507

    16. [16]

      Over, H. Chem. Rev. 2012, 43, 3356.
       

    17. [17]

      Liu, T. T.; Xie, L. S.; Yang, J. H.; Kong, R. M.; Sun, X. P.; Chen, L. ChemElectroChem 2017, 4, 1840.  doi: 10.1002/celc.v4.8

    18. [18]

      Fang, Y. H.; Liu, Z. P. J. Am. Chem. Soc. 2010, 132, 18214.  doi: 10.1021/ja1069272

    19. [19]

      Fang, Z.; Peng, L.; Zhu, Y.; Yan, C.; Wang, S.; Kalyani, P.; Wu, X.; Yu, G. ACS Nano 2017, 11, 9550.  doi: 10.1021/acsnano.7b05481

    20. [20]

      Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Angew. Chem., Int. Ed. 2016, 128, 3758.  doi: 10.1002/ange.201511447

    21. [21]

      Ji, Y. Y.; Li, Y.; Ren, X.; Cui, G. W.; Xiong, X. L.; Sun, X. P. ACS Sustain. Chem. Eng. 2018, 6, 9555.  doi: 10.1021/acssuschemeng.8b01841

    22. [22]

      Yang, J.; Zhu, G.; Liu, Y.; Xia, J.; Ji, Z.; Shen, X. Adv. Funct. Mater. 2016, 26, 4712.  doi: 10.1002/adfm.v26.26

    23. [23]

      Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J. Am. Chem. Soc. 2014, 136, 7077.  doi: 10.1021/ja502128j

    24. [24]

      Chuan, T. Y.; Chun, Z. H. Chem. Commun. 2016, 52, 11591.  doi: 10.1039/C6CC05699G

    25. [25]

      Hoare, J. P.; Schuldiner, S. J. Phys. Chem. 2002, 62, 229.
       

    26. [26]

      Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J. J. Am. Chem. Soc. 2017, 139, 8320.  doi: 10.1021/jacs.7b03507

    27. [27]

      Li, F. L.; Shao, Q.; Huang, X.; Lang, J. P. Angew. Chem., Int. Ed. 2018, 57, 1888.  doi: 10.1002/anie.201711376

    28. [28]

      Chemelewski, W. D.; Rosenstock, J. R.; Mullins, C. B. J. Mater. Chem. 2014, 2, 14957.  doi: 10.1039/C4TA03078H

    29. [29]

      He, Y. H.; Xu, J. M.; Wang, N. Chem. Eng. Prog. 2016, 35, 2057 (in Chinese).
       

    30. [30]

      Landon, J.; Demeter, E.; İnoğlu, N.; Keturakis, C.; Wachs, I. E.; Frenkel, A. I. ACS Catal. 2012, 2, 1793.  doi: 10.1021/cs3002644

    31. [31]

      Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F. J. Am. Chem. Soc. 2013, 135, 8452.  doi: 10.1021/ja4027715

    32. [32]

      Trotochaud, L.; Young, S. L.; Ranney, J. K. J. Am. Chem. Soc. 2014, 136, 6744.  doi: 10.1021/ja502379c

    33. [33]

      Smith, A. M.; Trotochaud, L.; Burke, M. S.; Boettcher, S. W. Chem. Commun. 2015, 51, 5261.  doi: 10.1039/C4CC08670H

    34. [34]

      Yang, Y.; Zhuang, L.; Lin, R.; Li, M.; Xu, X.; Rufford, T. E.; Zhu, Z. J. Power Sources 2017, 349, 68.  doi: 10.1016/j.jpowsour.2017.03.028

    35. [35]

      Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; He, Y. Int. J. Hydrogen Energy 2015, 40, 13258.  doi: 10.1016/j.ijhydene.2015.07.165

    36. [36]

      Zhao, Y.; Chen, S.; Sun, B.; Su, D.; Huang, X.; Liu, H.; Yan, Y.; Sun, K.; Wang, G. Sci. Rep. 2015, 5, 7629.  doi: 10.1038/srep07629

    37. [37]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925.  doi: 10.1021/ja5082553

    38. [38]

      Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G. ACS Catal. 2017, 7, 469.  doi: 10.1021/acscatal.6b02573

    39. [39]

      Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Angew. Chem., Int. Ed. 2015, 54, 4535.  doi: 10.1002/anie.201411450

    40. [40]

      Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. ACS Appl. Mater. Interfaces 2016, 8, 35390.  doi: 10.1021/acsami.6b13411

    41. [41]

      Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T.; Liu, J.; Le, Z.; Li, X.; Wu, H. B.; Lu, Y. Adv. Energy Mater. 2017, 7, 1701154.  doi: 10.1002/aenm.201701154

    42. [42]

      Guo, Y.; Liu, Y.; Qi, J. J.; Li, H.; He, L. L. Acta Chim. Sinica 2017, 75, 914 (in Chinese).
       

    43. [43]

      Bao, J. Z.; Wang, S. L. Acta Phys.-Chim. Sin. 2011, 27, 2849 (in Chinese).  doi: 10.3866/PKU.WHXB20112849

    44. [44]

      Yang, Q. Q.; Liu, L.; Xiao, L.; Wang, M. J.; Li, J.; Wei, Z. D. J. Mater. Chem. A 2018, 6, 14752.  doi: 10.1039/C8TA03604G

    45. [45]

      Ma, Y. D.; Dai, X. P.; Liu, M. Z.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 34396.  doi: 10.1021/acsami.6b11821

    46. [46]

      Wu, Y.; Chen, M.; Han, Y.; Luo, H.; Su, X.; Zhang, M. T.; Lin, X.; Sun, J.; Wang, L.; Deng, L.; Zhang, W.; Cao, R. Angew. Chem., Int. Ed. 2015, 54, 4870.  doi: 10.1002/anie.201412389

    47. [47]

      Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Chem. Mater. 2016, 28, 6934.  doi: 10.1021/acs.chemmater.6b02610

    48. [48]

      Han, X.; Yu, C.; Zhou, S.; Zhao, C.; Huang, H.; Yang, J.; Liu, Z.; Zhao, J.; Qiu, J. Adv. Energy Mater. 2017, 7, 1602148.  doi: 10.1002/aenm.201602148

    49. [49]

      Wu, G.; Li, N.; Dai, C. S.; Zhou, D. R. Chinese J. Catal. 2004, 25, 319 (in Chinese).  doi: 10.3321/j.issn:0253-9837.2004.04.016

    50. [50]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.  doi: 10.1016/0021-9797(68)90272-5

  • 加载中
    1. [1]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    19. [19]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    20. [20]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

Metrics
  • PDF Downloads(25)
  • Abstract views(8853)
  • HTML views(597)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return