Citation: Zhu Mingjing, Peng Juan, Tang Ping, Qiu Feng. Preparation and Characterization of Highly Stable and Aqueous Dispersion of Conjugated Polyelectrolyte/Single-Walled Carbon Nanotube Nanocomposites[J]. Acta Chimica Sinica, ;2018, 76(6): 453-459. doi: 10.6023/A18030090 shu

Preparation and Characterization of Highly Stable and Aqueous Dispersion of Conjugated Polyelectrolyte/Single-Walled Carbon Nanotube Nanocomposites

  • Corresponding author: Peng Juan, juanpeng@fudan.edu.cn
  • Received Date: 6 March 2018
    Available Online: 20 June 2018

    Fund Project: the National Natural Science Foundation of China 21674024Ministry of Science and Technology of China 2016YFA0203301the National Natural Science Foundation of China 21320102005the National Natural Science Foundation of China 21274029Project supported by the National Natural Science Foundation of China (Nos. 21674024, 21274029, 21320102005) and Ministry of Science and Technology of China (No. 2016YFA0203301)

Figures(8)

  • The dispersion of single-walled carbon nanotubes (SWNTs) is a key point to develop their extensive applications. Especially, to meet the requirements of future green chemistry, the preparation of environmentally-friendly, highly stable and well-distributed SWNTs in aqueous solution becomes particularly important. Based on it, a water-soluble conjugated polyelectrolyte, namely poly[3-[6-(N-methylimidazolium)hexyl]thiophene] (P3MHT) was designed and used to disperse SWNTs through non-covalent strategy. P3MHT was synthesized by a modified Grignard metathesis (GRIM) polymerization followed by quaternization of the bromohexyl side groups of the poly[3-(6-bromohexyl)thiophene] with N-methylimidazole. The P3MHT/SWNTs nanocomposites were prepared by mixing P3MHT and SWNTs in water during ultrasonication followed by centrifugation. UV-vis absorption spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscope (TEM), Zeta-nano electric potential analyzer, thermogravimetric (TGA) analysis were applied to characterize P3MHT/SWNTs nanocomposites. Compared to the commercial sodium dodecyl sulfate (SDS) surfactant to disperse SWNTs in aqueous solution, P3MHT exhibited a much better ability to disperse SWNTs under the same condition, i.e., the concentration of SWNTs dispersed by P3MHT was about two times than that of SWNTs dispersed by SDS. In P3MHT/SWNTs nanocomposite solution, SWNTs were exfoliated to form individuals or small bundles with an average size of 298 nm. However, in SDS/SWNTs solution, SWNTs preferred to form small aggregates with an average size of more than 500 nm. The P3MHT backbones were wrapped around individual SWNTs via π-π interactions to form the charge-transfer complexes. The ionic side chains of P3MHT not only made the nanocomposites dispersed in water, but also prevented the aggregation of SWNTs by electrostatic repulsion, resulting in aqueous dispersion of P3MHT/SWNTs nanocomposites. While SDS molecules were adsorbed on the surface of SWNTs via hydrophobic alkyl chains, which was much weaker than the π-π interactions between P3MHT and SWNTs. Such P3MHT/SWNTs nanocomposite solution exhibited high stability which remained almost unchanged after 6 months while SDS/SWNTs nanocomposite had already precipitated then. Overall, it provides a promising and simple method to develop highly stable and water processed SWNTs.
  • 加载中
    1. [1]

      Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Chem. Soc. Rev. 2013, 42, 2824.  doi: 10.1039/C2CS35335K

    2. [2]

      Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L. M. Science 2017, 355, 271.  doi: 10.1126/science.aaj1628

    3. [3]

      Liu, S.; Guo, X. F. Acta Chim. Sinica 2013, 71, 478(in Chinese).
       

    4. [4]

      Zhang, S.; Kang, L.; Wang, X.; Tong, L.; Yang, L.; Wang, Z.; Qi, K.; Deng, S.; Li, Q.; Bai, X.; Ding, F.; Zhang, J. Nature 2017, 543, 234.  doi: 10.1038/nature21051

    5. [5]

      Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Peng, F.; Li, X.; Li, R.; Li, Y.; Li, M.; Bai, X.; Ding, F.; Li, Y. Nature 2014, 510, 522.  doi: 10.1038/nature13434

    6. [6]

      Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284(in Chinese).  doi: 10.7503/cjcu20160630
       

    7. [7]

      Rösner, B.; Guldi, D. M.; Chen, J.; Minett, A. I.; Fink, R. H. Nanoscale 2014, 6, 3695.  doi: 10.1039/c3nr05788g

    8. [8]

      Sang, W. K.; Kim, T.; Kim, Y. S.; Hong, S. C.; Lim, H. J.; Yang, S. J.; Park, C. R. Carbon 2012, 50, 3.  doi: 10.1016/j.carbon.2011.08.011

    9. [9]

      Guo, L. H.; Gong, L. H.; Yuan, F. L.; Zhang, B.; Bai, X. D.; Lian, Y. F. Acta Chim. Sinica 2005, 63, 1936(in Chinese).  doi: 10.3321/j.issn:0567-7351.2005.20.016
       

    10. [10]

      Lin, G. F.; Meng, L. J.; Zhang, X. K.; Lu, Q. H. Prog. Chem. 2010, 22, 331(in Chinese).
       

    11. [11]

      Singh, P.; Campidelli, S.; Giordani, S.; Bonifazi, D.; Bianco, A.; Prato, M. Chem. Soc. Rev. 2009, 38, 2214.  doi: 10.1039/b518111a

    12. [12]

      Liang, L.; Xie, W.; Fang, S.; He, F.; Yin, B.; Tlili, C.; Wang, D.; Qiu, S.; Li, Q. J. Mater. Chem. C 2017, 5, 11339.  doi: 10.1039/C7TC04390B

    13. [13]

      Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Acc. Chem. Res. 2014, 47, 2446.  doi: 10.1021/ar500141j

    14. [14]

      Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H.-S.; Tok, J. B.-H.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.  doi: 10.1038/ncomms1545

    15. [15]

      Yang, H.; Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. ACS Nano 2015, 9, 9012.  doi: 10.1021/acsnano.5b03051

    16. [16]

      Liu, Z.; Li, H.; Qiu, Z.; Zhang, S. L.; Zhang, Z. B. Adv. Mater. 2012, 24, 3633.  doi: 10.1002/adma.v24.27

    17. [17]

      Yang, S.; Meng, D.; Sun, J.; Yan, H.; Yong, H.; Geng, J. ACS Appl. Mater. Interfaces 2014, 6, 7686.  doi: 10.1021/am500973m

    18. [18]

      Derenskyi, V.; Gomulya, W.; Rios, J. M.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A.; Scherf, U.; Loi, M. A. Adv. Mater. 2014, 26, 5969.  doi: 10.1002/adma.201401395

    19. [19]

      Mai, C. K.; Liu, J.; Evans, C. M.; Segalman, R. A.; Chabinyc, M. L.; Cahill, D. G.; Bazan, G. C. Macromolecules 2016, 49, 4957.  doi: 10.1021/acs.macromol.6b00546

    20. [20]

      Li, Y.; Mai, C. K.; Phan, H.; Liu, X.; Nguyen, T. Q.; Bazan, G. C.; Chan-Park, M. B. Adv. Mater. 2014, 26, 4697.  doi: 10.1002/adma.v26.27

    21. [21]

      Kang, Y. K.; Lee, O. S.; Deria, P.; Sang, H. K.; Park, T. H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Nano Lett. 2009, 9, 1414.  doi: 10.1021/nl8032334

    22. [22]

      Deria, P.; Olivier, J. H.; Park, J.; Therien, M. J. J. Am. Chem. Soc. 2014, 136, 14193.  doi: 10.1021/ja507457z

    23. [23]

      Mai, C. K.; Russ, B.; Fronk, S. L.; Hu, N.; Chan-Park, M. B.; Urban, J. J.; Segalman, R. A.; Chabinyc, M. L.; Bazan, G. C. Energy Environ. Sci. 2015, 8, 2341.  doi: 10.1039/C5EE00938C

    24. [24]

      Osaka, I.; Mccullough, R. D. Acc. Chem. Res. 2008, 41, 1202.  doi: 10.1021/ar800130s

    25. [25]

      He, M.; Zhao, L.; Wang, J.; Han, W.; Yang, Y.; Qiu, F.; Lin, Z. ACS Nano 2010, 4, 3241.  doi: 10.1021/nn100543w

    26. [26]

      He, M.; Ge, J.; Lin, Z.; Feng, X.; Wang, X.; Lu, H.; Yang, Y.; Qiu, F. Energy Environ. Sci. 2012, 5, 8351.  doi: 10.1039/c2ee21803h

    27. [27]

      Pan, S.; He, L.; Peng, J.; Qiu, F.; Lin, Z. Angew. Chem. Int. Ed. 2016, 55, 8686.  doi: 10.1002/anie.201603189

    28. [28]

      Yang, X.; Ge, J.; He, M.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. Macromolecules 2016, 49, 287.  doi: 10.1021/acs.macromol.5b02001

    29. [29]

      Zhu, M.; Kim, H.; Yu, J. J.; Park, S.; Du, Y. R.; Kim, K.; Tang, P.; Qiu, F.; Kim, D. H.; Peng, L. J. Mater. Chem. A 2016, 4, 18432.  doi: 10.1039/C6TA08181A

    30. [30]

      Xia, H.; Ye, Z.; Liu, X.; Peng, J.; Qiu, F. RSC Adv.2014, 4, 19646.  doi: 10.1039/c4ra01127a

    31. [31]

      Duarte, A.; Pu, K. Y.; Liu, B.; Bazan, G. C. Chem. Mater. 2011, 23, 501.  doi: 10.1021/cm102196t

    32. [32]

      Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S. Chem. Soc. Rev. 2013, 42, 6620.  doi: 10.1039/c3cs60036j

    33. [33]

      Rochat, S.; Swager, T. M. ACS Appl. Mater. Interfaces 2013, 5, 4488.  doi: 10.1021/am400939w

    34. [34]

      Ghoos, T.; Malinkiewicz, O.; Conings, B.; Lutsen, L.; Vanderzande, D. J.; Bolink, H. J.; Maes, W. RSC Adv. 2013, 3, 25197.  doi: 10.1039/c3ra43986k

    35. [35]

      Liang, S.; Zhao, Y.; Adronov, A. J. Am. Chem. Soc. 2014, 136, 970.  doi: 10.1021/ja409918n

    36. [36]

      Bounioux, C.; Bar-Hen, A.; Yerushalmi-Rozen, R. Chem. Commun. 2015, 51, 6343.  doi: 10.1039/C5CC00802F

    37. [37]

      Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034.  doi: 10.1021/ja026104m

    38. [38]

      Rao, G. P.; Lu, C.; Su, F. Sep. Purif. Technol. 2007, 58, 224.  doi: 10.1016/j.seppur.2006.12.006

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    11. [11]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    12. [12]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    13. [13]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    14. [14]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

Metrics
  • PDF Downloads(15)
  • Abstract views(1727)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return