Citation: Wu Miao Miao, Liu Shiqiang, Chen Hao, Wei Xuehu, Li Mingyang, Yang Zhibin, Ma Xiangdong. Superhalogen Substitutions in Cubic Halide Perovskite Materials for Solar Cells:A First-principles Investigation[J]. Acta Chimica Sinica, ;2018, 76(1): 49-54. doi: 10.6023/A17090406 shu

Superhalogen Substitutions in Cubic Halide Perovskite Materials for Solar Cells:A First-principles Investigation

  • Corresponding author: Wu Miao Miao, miaomwu@cumtb.edu.cn Yang Zhibin, yangzhibin0001@163.com
  • Received Date: 4 September 2017
    Available Online: 20 January 2017

    Fund Project: the National Training Program of Innovation and Entrepreneurship for Undergraduates C201604020the National Natural Science Foundation of China 11404395the Fundamental Research Funds for the Central Universities 2013QJ01Project supported by the National Key Research and Development Program of China (No. 2017YFB0601904), the National Natural Science Foundation of China (No. 11404395), the Fundamental Research Funds for the Central Universities (No. 2013QJ01) and the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. C201604020)the National Key Research and Development Program of China 2017YFB0601904

Figures(7)

  • Halide perovskite (ABC3) solar cell has received a lot of attentions due to its excellent photoelectronic properties. It has been proven to be an effective way to modify halide perovskite materials' bandgap by replacing A or B ions with other equivalent ions. However, C ions have much fewer choices and are limited to halogen anions or pseudohalides anions. We designed a series of new cubic perovskite structures through substituting C anions by superhalogen clusters anions (BeX3-, MgX3-, BX4-, AlX4-, SiX5-, PX6-, X=F, Cl), and studied their structures and properties in first-principles way. Calculations were performed by using the Vienna ab initio simulation package (VASP) based on density functional theory. The DOS (Density of States) and bandgaps were calculated to analyze properties of the new perovskite structures. The results show that BeX3-, MgX3- (X=F, Cl) and SiCl5- could not remain its structure which means these three clusters are not superhalogen anions anymore after doping. The size and symmetry of superhalogen anions have influences on the structures of doped perovskites. The superhalogen anion whose symmetry is higher and size is closed to I- ion induces less distortions to doped perovskite structures. Comparing to the VBM (Valence Band Maximum) and CBM (Conduction Band Minimum) of CsPbI3, superhalogen anions substitutions could change the compositions of CBM and VBM and bandgaps. The bandgaps of superhalogen anions partial substitutions in halide perovskite become smaller compared to structures with superhalogen anions substituting completely. We demonstrate that the CsPb(PCl6)3, with a direct-bandgap of 1.58 eV located at M(0, 0.5, 0.5) point, could be a potential candidate material for solar cells. Its CBM mainly is dominated by Cl 3p states, P 3s states and Pb 6p states. The other doped perovskites with wide bandgaps may have potential applications in transistors or memristors. We hope that these results could provide theoretical guidance for synthesis of new perovskite materials for solar cells.
  • 加载中
    1. [1]

      Guo, X. D.; Niu, G. D.; Wang, L. D. Acta Chim. Sinica 2015, 73, 211.  doi: 10.3866/PKU.WHXB201412231

    2. [2]

      Wang, N. N.; Si, J. J.; Jin, Y. Z.; Wang, J. P.; Huang, W. Acta Chim. Sinica 2015, 73, 171.
       

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    4. [4]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8, 506.  doi: 10.1038/nphoton.2014.134

    5. [5]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S. C.; Seok, S, I. Nat. Mater. 2014, 13, 897.  doi: 10.1038/nmat4014

    6. [6]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gr tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591.  doi: 10.1038/srep00591

    7. [7]

      Tang, H.; He, S. S.; Peng, C. W. Nanoscale Res. Lett. 2017, 12, 410.  doi: 10.1186/s11671-017-2187-5

    8. [8]

      Ganose, A. M.; Savory, C. N.; Scanlon, D. O. J. Phys. Chem. Lett. 2015, 6, 4594.  doi: 10.1021/acs.jpclett.5b02177

    9. [9]

      Jiang, Q. L.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Angew. Chem., Int. Ed. 2015, 54, 7617.  doi: 10.1002/anie.201503038

    10. [10]

      Umeyama, D.; Lin, Y.; Karunadasa, H. I. Chem. Mater. 2016, 28, 3241.  doi: 10.1021/acs.chemmater.6b01147

    11. [11]

      Xiao, Z. W.; Meng, W. W.; Saparov, B.; Duan, H. S.; Wang, C. L.; Feng, C. B.; Liao, W. Q.; Ke, W, J.; Zhao, D. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. J. Phys. Chem. Lett. 2016, 7, 1213.  doi: 10.1021/acs.jpclett.6b00248

    12. [12]

      Hendon, C. H.; Yang, R. X.; Burton, L. A.; Walsh, A. J. Mater. Chem. A 2015, 3, 9067.  doi: 10.1039/C4TA05284F

    13. [13]

      Nagane, S.; Bansode, U.; Game, O.; Chhatre, S.; Ogale, S. Chem. Commun. 2014, 50, 9741.  doi: 10.1039/C4CC04537H

    14. [14]

      Yao, Q. S.; Fang, H.; Deng, K. M; Kan, E.; Jena, P. Nanoscale 2016, 8, 17836.  doi: 10.1039/C6NR05573G

    15. [15]

      Fang, H.; Jena, P. J. Phys. Chem. Lett. 2016, 7, 1596.  doi: 10.1021/acs.jpclett.6b00435

    16. [16]

      Andersen, T.; Haugen, H. K.; Hotop, H. J. Phys. Chem. Ref. Data. 1999, 28, 1511.  doi: 10.1063/1.556047

    17. [17]

      Gutsev, G. L. Chem. Phys. 1981, 56, 277.  doi: 10.1016/0301-0104(81)80150-4

    18. [18]

      Gutsev, G. L.; Boldyrev, A. I. Russ. Chem. Rev. 1987, 56, 519.  doi: 10.1070/RC1987v056n06ABEH003287

    19. [19]

      Prigogine, I.; Rice, S. A. The Theoretical Investigation of the Electron Affinity of Chemical Compounds, Vol. 61, John Wiley Sons, Inc., New York, 2007, pp. 169~221.

    20. [20]

      Gutsev, G. L.; Boldyrev, A. I. J. Phys. Chem. 1990, 94, 2256.  doi: 10.1021/j100369a012

    21. [21]

      Gutsev, G. L.; Boldyrev, A. I. Chem. Phys. Lett. 1984, 108, 250.  doi: 10.1016/0009-2614(84)87059-1

    22. [22]

      Marchaj, M.; Freza, S.; Skurski, P. J. Phys. Chem. A 2012, 116, 1966.  doi: 10.1021/jp300251t

    23. [23]

      Marchaj, M.; Freza, S.; Skurski, P. Chem. Phys. Lett. 2014, 612, 172.  doi: 10.1016/j.cplett.2014.08.021

    24. [24]

      Srivastava, A. K.; Misra, N. Mol. Phys. 2015, 113, 8, 866.

    25. [25]

      Srivastava, A. K.; Misra, N. Polyhedron 2015, 102, 711.  doi: 10.1016/j.poly.2015.09.072

    26. [26]

      Anusiewicz, I.; Sobczyk, M.; Dąbkowska, I.; Skurski, P. Chem. Phys. 2003, 291, 171.  doi: 10.1016/S0301-0104(03)00208-8

    27. [27]

      Sikorska, C.; Smuczyńska, S.; Skurski, P.; Anusiewicz, I. Inorg. Chem. 2008, 47, 7348.  doi: 10.1021/ic800863z

    28. [28]

      Furuhashi, K.; Habasaki, J.; Okada, I. Mol. Phys. 1986, 59, 1329.  doi: 10.1080/00268978600102761

    29. [29]

      Stadler, R.; Wolf, W.; Podloucky, R.; Kresse, G.; Furthmüller, J.; Hafner, J. Phys. Rev. B 1996, 54, 1729.
       

    30. [30]

      Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Ángyán, J. G. J. Chem. Phys. 2006, 124, 154709.  doi: 10.1063/1.2187006

    31. [31]

      Liu, G.; Liu, S. B.; Xu, B.; Ouyang, C. Y.; Song, H. Y. J. Appl. Phys. 2015, 112, 666.
       

    32. [32]

      Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999.  doi: 10.1021/jz401532q

    33. [33]

      Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gr tzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.  doi: 10.1021/jp4048659

    34. [34]

      Zhao, Z. G.; Lu, X. Q.; Li, K.; Wei, S. X.; Liu, X. F.; Niu, K.; Guo, W. Y. Acta Chim. Sinica 2016, 74, 1003.
       

    35. [35]

      Zhao, Z. G.; Niu, Y. Q.; Zhao, Y.; Song, Q. H.; Xin, L.; Lu, X. Q. Acta Chim. Sinica 2016, 74, 689.  doi: 10.3969/j.issn.0253-2409.2016.06.008

  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    8. [8]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    13. [13]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    14. [14]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(29)
  • Abstract views(2833)
  • HTML views(565)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return