Citation: Guo Xiaoling, Chen Xiao, Su Dangsheng, Liang Changhai. Preparation of Ni/C Core-shell Nanoparticles through MOF Pyrolysis for Phenylacetylene Hydrogenation Reaction[J]. Acta Chimica Sinica, ;2018, 76(1): 22-29. doi: 10.6023/A17070339 shu

Preparation of Ni/C Core-shell Nanoparticles through MOF Pyrolysis for Phenylacetylene Hydrogenation Reaction

  • Corresponding author: Liang Changhai, changhai@dlut.edu.cn
  • Received Date: 26 July 2017
    Available Online: 23 January 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21373038, 21403026), the Natural Science Foundation of Liaoning Province in China (No. 2015021014), and the Fundamental Research Funds for the Central Universities (No. DUT16RC(4)03)the Fundamental Research Funds for the Central Universities DUT16RC(4)03the National Natural Science Foundation of China 21373038the Natural Science Foundation of Liaoning Province in China 2015021014the National Natural Science Foundation of China 21403026

Figures(10)

  • A series of Ni/C core-shell nano catalysts with abundant mesoporous and uniform size were prepared by Ni-MOF-74 pyrolysis. The Ni-MOF-74 was synthesized via hydrothermal method with nickel acetate and 2, 5-dihydroxyterephthalic acid (DHTA) as raw materials. The pyrolysis process was carried out in a tube furnace under Argon (Ar) atmosphere with a heating rate of 2℃/min. Completed pyrolytic product Ni/C can be obtained by extending the pyrolysis time (6 h) at 400℃ or increasing the pyrolysis temperature (≥ 500℃) based on the TG result. Moreover, the particle size of Ni/C varied with pyrolysis temperature from 3 nm (500℃) to 17 nm (800℃). The TEM images and Ar ion sputtering XPS indicated a core-shell structure of the pyrolysis product. Nickel species can be stable in the form of nickel (Ni0) due to the electronic properties regulating and confinement effect of the carbon shell. Moreover, the carbon shell greatly weaken the interaction between particles, which is favorable for the dispersion of the catalyst in the reaction system. H2-TPR results show that the interaction between nickel and amorphous carbon increases with the pyrolysis temperature, which is unfavorable to the interaction between Ni species and the reactant. The phenylacetylene (PA) hydrogenation reaction was carried out with 0.2 g catalyst, 10 mL of 1 mol/L ethanolic phenylacetylene solution and 1.0 MPa H2 in a 50 mL high-pressure autoclave under 50℃. Ni/C exhibits excellent catalytic activity and recyclability in phenylacetylene (PA) hydrogenation. In addition, we compared the activity of Ni/C with several reported catalyst system and found their activity increases in the order of Ni, NiSix, supported Ni2Si, Ni/C, Pd and Pt. With an activity of up to 0.833 mmol·min-1·gcat.-1 at 50℃ (Ni/C-400-6, Ni/C-500-2), Ni/C is the most promising transition metal catalyst that can be comparable with noble metal.
  • 加载中
    1. [1]

      (a) Wu, Z. L.; Cravotto, G.; Gaudino, E. C.; Giacomino, A.; Medlock, J.; Bonrath, W. Ultrason. Sonochem. 2017, 35, 664. (b) Yang, K. X.; Chen, X.; Guan, J. C.; Liang, C. H. Catal. Today 2015, 246, 176.

    2. [2]

      Wang, B.; Sun, L. M.; Ma, H. W.; Zheng, Y. D.; Hu, X. L.; Yang, H. Q.; Liang, S. Q. Contemp. Chem. Ind. 2015, 2048.  doi: 10.3969/j.issn.1671-0460.2015.08.103

    3. [3]

      Berenblyum, A. S.; Al-Wadhaf, H. A.; Katsman, E. A. Petrol. Chem. 2015, 55, 118.  doi: 10.1134/S0965544115020048

    4. [4]

      (a) Mastalir, Á.; Király, Z. J. Catal. 2003, 220, 372; (b) Erokhin, A. V.; Lokteva, E. S.; Yermakov, A. Y.; Boukhvalov, D. W.; Maslakov, K. I.; Golubina, E. V.; Uimin, M. A. Carbon 2014, 74, 291.

    5. [5]

      Su, D. S.; Perathoner, S.; Centi, G. Chem. Rev. 2013, 113, 5782.  doi: 10.1021/cr300367d

    6. [6]

      Li, S. Q.; Liu, J. T.; Sun, F. X.; Wang, W. M.; Cheng, Y. L. CN101475438, 2009[Chem. Abstr. 2009, 35, 840049].

    7. [7]

      Beyhaghi, M.; Kiani-Rashid, A. R.; Kashefi, M.; Khaki, J. V.; Jonsson, S. Appl. Surf. Sci. 2015, 344, 1.  doi: 10.1016/j.apsusc.2015.01.186

    8. [8]

      (a) Cho, G. S.; Lim, J. K.; Choe, K. H.; Lee, W. Mater. Sci. Forum 2010, 658, 360; (b) Wu, C. Z.; Yao, X. D.; Zhang, H. Int. J. Hydrogen Energy 2010, 35, 247.

    9. [9]

      Manukyan, A.; Mirzakhanyan, A.; Sajti, L.; Khachaturyan, R.; Kaniukov, E.; Lobanovsky, L.; Sharoyan, E. Nano 2015, 10, 7.
       

    10. [10]

      Meng, Z. Q.; Li, X. B.; Xiong, Y. J.; Zhan, J. T. Nonferr. Metal. Soc. 2012, 22, 2719.  doi: 10.1016/S1003-6326(11)61523-9

    11. [11]

      Li, X.; Cheng, H.; Fan, J. Powder Metall. Technol. 2009, 27, 142.

    12. [12]

      Shen, K.; Chen, X.; Chen, J.; Li, Y. ACS Catal. 2016, 6, 5887.  doi: 10.1021/acscatal.6b01222

    13. [13]

      Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249.  doi: 10.1002/adma.201002854

    14. [14]

      Dietzel, P. D.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvag, H. Chem. Commun. 2006, 959.
       

    15. [15]

      Dietzel, P. D.; Morita, Y.; Blom, R.; Fjellvag, H. Angew. Chem., Int. Ed. 2005, 44, 6354.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. Chem. Eng. Sci. 2011, 66, 163.  doi: 10.1016/j.ces.2010.10.002

    17. [17]

      An, C.; Liu, G.; Li, L.; Wang, Y.; Chen, C.; Wang, Y.; Jiao, L.; Yuan, H. Nanoscale 2014, 6, 3223.  doi: 10.1039/c3nr05607d

    18. [18]

      Zhou, L.; Zhang, T.; Tao, Z.; Chen, J. Nano Res. 2014, 7, 774.  doi: 10.1007/s12274-014-0438-7

    19. [19]

      (a) Paul, R.; Sharma, M. K.; Chatterjee, R.; Hussain, S.; Bhar, R.; Pal, A. K. Appl. Surf. Sci. 2012, 258, 5850; (b) Wang, H.; Cao, Y.; Zou, G.; Yi, Q.; Guo, J.; Gao, L. ACS Appl. Mater. Interfaces 2017, 9, 60; (c) Kovacs, G. J.; Bertoti, I.; Radnoczi, G. Thin Solid Films 2008, 516, 7942.

    20. [20]

      (a) Leng, Y. G.; Shao, H. Y.; Wang, Y. T.; Suzuki, M.; Li, X. G. J. Nanosci. Nanotechnol. 2006, 6, 221; (b) Hasegawa, M.; Sugawara, K.; Suto, R.; Sambonsuge, S.; Teraoka, Y.; Yoshigoe, A.; Filimonov, S.; Fukidome, H.; Suemitsu, M. Nanoscale Res. Lett. 2015, 10, 421.

    21. [21]

      Golubina, E. V.; Lokteva, E. S.; Erokhin, A. V.; Veligzhanin, A. A.; Zubavichus, Y. V.; Likholobov, V. A.; Lunin, V. V. J. Catal. 2016, 344, 90.  doi: 10.1016/j.jcat.2016.08.017

    22. [22]

      Guo, J. X.; Liang, J.; Chu, Y. H.; Sun, M. C.; Yin, H. Q.; Li, J. J. Appl. Catal. A: Gen. 2012, 421, 142.
       

    23. [23]

      Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93.  doi: 10.1006/jcis.2002.8309

    24. [24]

      Wang, Z. M.; Yamashita, N.; Wang, Z. X.; Hoshinoo, K.; Kanoh, H. J. Colloid Interface Sci. 2004, 276, 143.  doi: 10.1016/j.jcis.2004.03.017

    25. [25]

      Ortega, K. F.; Arrigo, R.; Frank, B.; Schlogl, R.; Trunschke, A. Chem. Mater. 2016, 28, 6826.  doi: 10.1021/acs.chemmater.6b01594

    26. [26]

      Oswald, S.; Bruckner, W. Surf. Interface Anal. 2004, 36, 17.  doi: 10.1002/(ISSN)1096-9918

    27. [27]

      Carraro, P. M.; Blanco, A. A. G.; Soria, F. A.; Lener, G.; Sapag, K.; Eimer, G. A.; Oliva, M. I. Microporous Mesoporous Mater. 2016, 231, 31.  doi: 10.1016/j.micromeso.2016.05.017

    28. [28]

      Cheng, C. B.; Shen, D. K.; Xiao, R.; Wu, C. F. Fuel 2017, 189, 419.  doi: 10.1016/j.fuel.2016.10.122

    29. [29]

      Rodriguez-Gomez, A.; Caballero, A. ChemNanoMat 2017, 3, 94.  doi: 10.1002/cnma.201600297

    30. [30]

      Liu, L. J.; Lou, H.; Chen, M. Int. J. Hydrogen Energy 2016, 41, 14721.  doi: 10.1016/j.ijhydene.2016.05.188

    31. [31]

      Hu, D.; Gao, J.; Ping, Y.; Jia, L.; Gunawan, P.; Zhong, Z.; Xu, G.; Gu, F.; Su, F. Ind. Eng. Chem. Res. 2012, 51, 4875.  doi: 10.1021/ie300049f

    32. [32]

      Yang, K. X.; Chen, X.; Wang, L.; Zhang, L. L.; Jin, S. H.; Liang, C. H. ChemCatChem 2017, 9, 1337.  doi: 10.1002/cctc.201601653

    33. [33]

      (a) Carturan, G.; Facchin, G.; Gottardi, V.; Guglielmi, M.; Navazio, G. J. Non-Cryst. Solids 1982, 48, 219; (b) Costa, M.; Pelagatti, P.; Pelizzi, C.; Rogolino, D. J. Mol. Catal. A: Chem. 2002, 178, 21.

    34. [34]

      Chen, X.; Li, M.; Guan, J.; Wang, X.; Williams, C. T.; Liang, C. Ind. Eng. Chem. Res 2012, 51, 3604.  doi: 10.1021/ie202227j

    35. [35]

      Kulikov, L. A.; Terenina, M. V.; Kryazheva, I. Y.; Karakhanov, E. A. Petro. Chem. 2017, 57, 222.  doi: 10.1134/S0965544117020177

    36. [36]

      Zhang, W.; Wang, F. S.; Li, X. L.; Liu, Y. S.; Liu, Y.; Ma, J. T. Appl. Surf. Sci. 2017, 404, 398.  doi: 10.1016/j.apsusc.2017.01.298

    37. [37]

      Boronoev, M. P.; Subbotina, E. S.; Kurmaeva, A. A.; Kardasheva, Y. S.; Maksimov, A. L.; Karakhanov, E. A. Petrol. Chem. 2016, 56, 109.  doi: 10.1134/S0965544116020055

    38. [38]

      (a) Chen, W.; Pan, X. L.; Bao, X. H. J. Am. Chem. Soc. 2007, 129, 7421; (b) Chen, W.; Pan, X. L.; Willinger, M. G.; Su, D. S.; Bao, X. H. J. Am. Chem. Soc. 2006, 128, 3136.

    39. [39]

      Fu, Q.; Bao, X. H. Chin. J. Catal. 2015, 36, 517.  doi: 10.1016/S1872-2067(15)60828-2

    40. [40]

      Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Angew. Chem. Int. Ed. 2015, 54, 2100.  doi: 10.1002/anie.201409524

    41. [41]

      Chen, X.; Li, M.; Guan, J.; Wang, X.; Williams, C. T.; Liang, C. Ind. Eng. Chem. Res. 2012, 51, 3604.  doi: 10.1021/ie202227j

  • 加载中
    1. [1]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    11. [11]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    12. [12]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(54)
  • Abstract views(4303)
  • HTML views(1051)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return