Citation: Huang Xiao-yue, Wang Wei, Ling Lan, Zhang Wei-xian. Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment[J]. Acta Chimica Sinica, ;2017, 75(6): 529-537. doi: 10.6023/A17020051 shu

Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment

  • Corresponding author: Ling Lan, linglan@tongji.edu.cn Zhang Wei-xian, zhangwx@tongji.edu.cn
  • Received Date: 13 February 2017

    Fund Project: the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 21677107

Figures(9)

  • Heavy metals are nonbiodegradable and bioaccumulative contaminants with high toxicity, thus heavy metal contamination and treatment have been hot research topics in recent years. Nanoscale zero-valent iron (nZVI) has received considerable attentions for its potential as a remedial agent for heavy metal sequestration and immobilization. In this paper, an overview is provided highlighting recent research progress on heavy metal-nZVI reactions, both laboratory studies and engineering applications are discussed. The core-shell structure with the core being metallic and the shell being iron oxides and the surface chemistry properties endow nZVI with unique and multifaceted functions for heavy metal removal including sorption, reduction and precipitation. Particle size of nZVI is in the range of nanoscale that imparts it with large specific surface area, high surface activity, and high density of reactive surface sites. A hybrid of effects, including instant separation, isolation, immobilization, and toxicity reduction can be achieved at the same time, making nZVI an effective remedial reagent for various heavy metals. Recent progress in instrumental analysis, especially the development of high-resolution electron microscopy, offers much-enhanced capability and new insights into the core-shell nature of nZVI and mechanisms of the heavy metal-nZVI reactions on a single nanoparticle. Research results obtained from a spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) integrated with high sensitive X-ray energy dispersive spectroscopy (EDS) provide detailed information on the fine structural features of nZVI and the intraparticle reactions with individual nanoparticles. Technical feasibility and operational advantages of using nZVI for the treatment of industrial wastewater are assessed through systematic laboratory and pilot scale studies. Based on the encouraging results of bench-scale experiments, we have successfully applied nZVI for large scale applications of nZVI for treatment of industrial wastewater containing heavy metals such as Cu, As, Pb and Zn. The long-term operation results show tremendous potentials of nZVI-based process as an efficient method for heavy metal treatment.
  • 加载中
    1. [1]

      Agarwal, S. K. Heavy Metal Pollution, APH publishing, New Delhi, 2009.

    2. [2]

      Asrari, E. Heavy Metal Contamination of Water and Soil:Analysis, Assessment, and Remediation Strategies, CRC Press, 2014.

    3. [3]

      Fu, J. J.; Wang, Y. W.; Zhou, L. J.; Zhang, A. Q.; Jiang, G. B. Prog. Chem. 2011, 23, 1756(in Chinese).
       

    4. [4]

      Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C. A. Science 2013, 341, 866.  doi: 10.1126/science.1237484

    5. [5]

      Cullen, W. R.; Reimer, K. J. Chem. Rev. 1989, 89, 713.  doi: 10.1021/cr00094a002

    6. [6]

      Kotas, J.; Stasicka, Z. Environ. Pollut. 2000, 107, 263.  doi: 10.1016/S0269-7491(99)00168-2

    7. [7]

      Järup, L. Brit. Med. Bull. 2003, 68, 167.  doi: 10.1093/bmb/ldg032

    8. [8]

      Goyer, R.; Golub, M.; Choudhury, H.; Hughes, M.; Kenyon, E.; Stifelman, M. In US Environmental Protection Agency, Risk Assessment Forum, Vol. 1200, Washington, DC, 2004.

    9. [9]

      El Samrani, A. G.; Lartiges, B. S.; Villiéras, F. Water Res. 2008, 42, 951.  doi: 10.1016/j.watres.2007.09.009

    10. [10]

      Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Water Res. 2002, 36, 4757.  doi: 10.1016/S0043-1354(02)00149-5

    11. [11]

      Fu, F.; Wang, Q. J. Environ. Manage. 2011, 92, 407.
       

    12. [12]

      Liu, Y.; Liang, P.; Guo, L.; Lu, H. B. Acta Chim. Sinica 2005, 63, 312(in Chinese).  doi: 10.3321/j.issn:0251-0790.2005.02.021
       

    13. [13]

      Wan, Q. F.; Ren, Y. M.; Wang, L.; Jiang, H. Z.; Deng, D. C.; Bai, Y.; Xia, C. Q. Acta Chim. Sinica 2011, 69, 1780(in Chinese).
       

    14. [14]

      Li, X. Q.; Zhang, W. X. J. Phys. Chem. C 2007, 111, 6939.  doi: 10.1021/jp0702189

    15. [15]

      Yan, W. L.; Herzing, A. A.; Kiely, C. J.; Zhang, W. X. J. Contam. Hydrol. 2010, 118, 96.  doi: 10.1016/j.jconhyd.2010.09.003

    16. [16]

      Li, S. L.; Wang, W.; Liang, F. P.; Zhang, W. X. J. Hazard. Mater. 2017, 322, 163.  doi: 10.1016/j.jhazmat.2016.01.032

    17. [17]

      Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. -X. J. Hazard. Mater. 2012, 211, 317.
       

    18. [18]

      Choi, C. J.; Dong, X. L.; Kim, B. K. Mater. Trans. 2001, 42, 2046.  doi: 10.2320/matertrans.42.2046

    19. [19]

      Crane, R.; Dickinson, M.; Popescu, I.; Scott, T. Water Res. 2011, 45, 2931.  doi: 10.1016/j.watres.2011.03.012

    20. [20]

      Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. Inorg. Chem. 1995, 34, 28.  doi: 10.1021/ic00105a009

    21. [21]

      Karlsson, M.; Deppert, K.; Wacaser, B.; Karlsson, L.; Malm, J. O. Appl. Phys. A 2005, 80, 1579.  doi: 10.1007/s00339-004-2987-1

    22. [22]

      Kuhn, L. T.; Bojesen, A.; immermann, L.; Nielsen, M. M. J. Phys.:Condens. Matter 2002, 14, 13551.  doi: 10.1088/0953-8984/14/49/311

    23. [23]

      Carpenter, E.; Calvin, S.; Stroud, R.; Harris, V. Chem. Mater. 2003, 15, 3245.  doi: 10.1021/cm034131l

    24. [24]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    25. [25]

      Wang, C.; Baer, D. R.; Amonette, J. E.; Engelhard, M. H.; Antony, J.; Qiang, Y. J. Am. Chem. Soc. 2009, 131, 8824.  doi: 10.1021/ja900353f

    26. [26]

      Zhdanov, V. P.; Kasemo, B. Chem. Phys. Lett. 2008, 452, 285.  doi: 10.1016/j.cplett.2008.01.006

    27. [27]

      Wang, C. M.; Baer, D. R.; Thomas, L. E.; Amonette, J. E.; Antony, J.; Qiang, Y.; Duscher, G. J. Appl. Phys. 2005, 98, 094308.  doi: 10.1063/1.2130890

    28. [28]

      Wang, Q.; Kanel, S. R.; Park, H.; Ryu, A.; Choi, H. J. Nanopart. Res. 2009, 11, 749.  doi: 10.1007/s11051-008-9524-7

    29. [29]

      Ling, L.; Pan, B. C.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    30. [30]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 209.  doi: 10.1021/ez4002054

    31. [31]

      Ling, L.; Zhang, W. X. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    32. [32]

      Chen, G. Sep. Purif. Technol. 2004, 38, 11.  doi: 10.1016/j.seppur.2003.10.006

    33. [33]

      Grosvenor, A.; Kobe, B.; McIntyre, N. Surf. Sci. 2004, 572, 217.  doi: 10.1016/j.susc.2004.08.035

    34. [34]

      Liu, A.; Zhang, W. X. Analyst 2014, 139, 4512.  doi: 10.1039/C4AN00679H

    35. [35]

      Scherer, M. M.; Balko, B. A.; Tratnyek, P. G. The Role of Oxides in Reduction Reactions at the Metal-Water Interface, ACS Symposium Series, American Chemical Society, 1998.

    36. [36]

      Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J. J.; Lecomte, P.; Génin, J. M. R. Environ. Sci. Technol. 2000, 34, 438.  doi: 10.1021/es9903779

    37. [37]

      Melitas, N.; Chuffe-Moscoso, O.; Farrell, J. Environ. Sci. Technol. 2001, 35, 3948.  doi: 10.1021/es001923x

    38. [38]

      Li, X. Q.; Zhang, W. X. Langmuir 2006, 22, 4638.  doi: 10.1021/la060057k

    39. [39]

      Fan, H. J.; Gösele, U.; Zacharias, M. Small 2007, 3, 1660.  doi: 10.1002/(ISSN)1613-6829

    40. [40]

      Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.  doi: 10.1126/science.1096566

  • 加载中
    1. [1]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    11. [11]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    15. [15]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

Metrics
  • PDF Downloads(117)
  • Abstract views(6187)
  • HTML views(2061)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return