Citation: Zheng Zhuo, Wu Zhenguo, Xiang Wei, Guo Xiaodong. Preparation and Electrochemical Performance of High Rate Spherical Layered LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium-Ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(5): 501-507. doi: 10.6023/A16110594 shu

Preparation and Electrochemical Performance of High Rate Spherical Layered LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium-Ion Batteries

  • Corresponding author: Guo Xiaodong, xiaodong2009@scu.edu.cn
  • Received Date: 10 November 2016

    Fund Project: the National Natural Science Foundation of China 21506133

Figures(8)

  • Layered Ni-rich compound LiNi0.5Co0.2Mn0.3O2 has drawn considerable attention recently because high Ni content contributes to the improvement of specific capacity and the reduction of cost. However, it is a challenge to obtain the Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode with both high rate performance and high tap density because the rate capability is often improved at the expense of volumetric energy density, which is mostly dependent on the tap density. In our work, an uniform Ni-rich LiNi0.5Co0.2Mn0.3O2 microsphere with an average diameter of ca. 5 μm and tap density of 2.1 g·cm-3 was successfully prepared using carbonate co-precipitation method, which can meet the commercial requirement for lithium-ion batteries (tap density≥2.1 g·cm-3, Lithium Nickel Cobalt Manganese Oxides from CETC International Co., Ltd). In this synthetic route, the 2 mol·L-1 mixture of NiSO4·6H2O, MnSO4·H2O and CoSO4·7H2O (Ni:Co:Mn=5:2:3, molar ratio) are the starting materials, 2 mol·L-1 Na2CO3 and 4 mol·L-1 NH3·H2O are the precipitant and chelating agent, respectively. In order to achieve high tap density, the stirring speed of continuous stirred tank reactor (CSTR) is as high as 1500 r/min, and the powder was preheated at 550 ℃ for 6 h and then calcined at 850 ℃ for 14 h in flowing oxygen. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicate that the microsphere LiNi0.5Co0.2Mn0.3O2 material has a well-ordered α-NaFeO2 structure with stable in-plane [\begin{document}$ \sqrt 3 $\end{document}×\begin{document}$ \sqrt 3 $\end{document}]R30° ordering in the transition-metal layers. Electrochemical results also confirm that this cathode has excellent cycling stability and high rate capability. Specifically, it exhibits a discharge capacity of 150 mAh·g-1 between 2.7 and 4.3 V at 1C after 100 cycles, with outstanding capacity retention of 94.6%. At 30C rate, it can still deliver a high discharge capacity of 96 mAh·g-1. Meanwhile, the energy storage capacity for this cathode is also encouraging. At 0.1C rate, the specific energy (Es) is 687.83 Wh·kg-1 (volumetric energy density is 1444.45 Wh·L-1); at 30C rate, the specific energy (Es) is 335.27 Wh·kg-1 (volumetric energy density is 704.07 Wh·L-1). These excellent features will make this microsphere LiNi0.5Co0.2Mn0.3O2 material as a potential positive electrode material for commercial high energy density lithium-ion batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  doi: 10.1038/35104644

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Sience 2011, 334, 928.  doi: 10.1126/science.1212741

    3. [3]

      Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. J. Mater. Chem. A 2014, 2, 15.  doi: 10.1039/C3TA13033A

    4. [4]

      Yu, X. Q.; Lyu, Y. C.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W.; Yang, X. Q. Adv. Energy Mater. 2014, 4, 1300950.  doi: 10.1002/aenm.201300950

    5. [5]

      Lv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013.
       

    6. [6]

      Qiu, Z. P.; Zhang, Y. J.; Xia, S. B.; Dong, P. Acta Chim. Sinica 2015, 73, 992.
       

    7. [7]

      Bi, Y.; Yang, W.; Du, R.; Zhou, J.; Liu, M.; Liu, Y.; Wang, D. J. Power Sources 2015, 283, 211.  doi: 10.1016/j.jpowsour.2015.02.095

    8. [8]

      Kim, Y. ACS Appl. Mater. Interfaces 2012, 4, 2329.  doi: 10.1021/am300386j

    9. [9]

      Lin, H. C.; Yang, Y. Acta Chim. Sinica 2009, 67, 104.  doi: 10.3321/j.issn:1001-4861.2009.01.019
       

    10. [10]

      Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. Nat. Mater. 2009, 8, 320.  doi: 10.1038/nmat2418

    11. [11]

      Cho, J.; Jung, H.; Park, Y.; Kim, G.; Lim, H. S. J. Electrochem. Soc. 2000, 147, 15.  doi: 10.1149/1.1393137

    12. [12]

      Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.; Petrov, I.; McBreen, J.; Amine, K. Electrochem. Commun. 2002, 4, 620.  doi: 10.1016/S1388-2481(02)00388-0

    13. [13]

      Woo, S. U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y. K. J. Electrochem. Soc. 2007, 154, A1005.  doi: 10.1149/1.2776160

    14. [14]

      Lin, B.; Wen, Z.; Gu, Z.; Huang, S. J. Power Sources 2008, 175, 564.  doi: 10.1016/j.jpowsour.2007.09.055

    15. [15]

      Whitfield, P. S.; Davidson, I. J.; Cranswick, L. M. D.; Swainson, I. P.; Stephens, P. W. Solid State Ionics 2005, 176, 463.  doi: 10.1016/j.ssi.2004.07.066

    16. [16]

      Li, W. W.; Li, L.; Yang, L. Nonferrous Met. 2014, 7, 53.  doi: 10.3969/j.issn.1007-7545.2014.07.016

    17. [17]

      Kong, J. Z.; Zhai, H. F.; Ren, C.; Gao, M. Y.; Zhang, X.; Li, H.; Li, J. X.; Tang, Z.; Zhou, F. J. Alloys Compd. 2013, 577, 507.  doi: 10.1016/j.jallcom.2013.07.007

    18. [18]

      Xie, L. S.; Lin, Q. Q.; Li, H. C.; Wang, Z. G.; Wang, C. F.; Hu, M. C.; Huang, R. H. Mater. Sci. 2017, 7, 72.

    19. [19]

      Li, Y. J.; Han, Q.; Ming, X. Q.; Ren, M. M.; Li, L.; Ye, W. Q.; Zhang, X. Z.; Xu, H.; Li, L. Ceram. Int. 2014, 40, 14933.  doi: 10.1016/j.ceramint.2014.06.090

    20. [20]

      Yang, Z. G.; Guo, X. D.; Xiang, W.; Hua, W. B.; Zhang, J.; He, F. R.; Wang, K.; Xiao, Y.; Zhong, B. H. J. Alloys Compd. 2017, 699, 358.  doi: 10.1016/j.jallcom.2016.11.245

    21. [21]

      Zhang, J. B.; Zhong, Y. J.; Shi, X. X.; Zheng, Z.; Hua, W. B.; Chen, Y. X.; Liu, W. Y.; Zhong, B. H. Chin. J. Chem. 2015, 33, 1303.  doi: 10.1002/cjoc.v33.11

    22. [22]

      Hua, W. B.; Wang, Y. J.; Zhong, Y. J.; Wang, G. P.; Zhong, B. H.; Fang, B. Z.; Guo, X. D.; Liao, S. X.; Wang, H. J. Chin. J. Chem. 2015, 33, 261.  doi: 10.1002/cjoc.v33.2

    23. [23]

      Ahn, W.; Lim, S. N.; Jung, K. N.; Yeon, S. H.; Kim, K. B.; Song, H. S.; Shin, K. H. J. Alloys Compd. 2014, 609, 143.  doi: 10.1016/j.jallcom.2014.03.123

    24. [24]

      Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Nano Energy 2013, 2, 1249.  doi: 10.1016/j.nanoen.2013.06.003

    25. [25]

      Yabuuchi, N.; Koyama, Y.; Nakayama, N.; Ohzuku, T. J. Electrochem. Soc. 2005, 152, A1434.  doi: 10.1149/1.1924227

    26. [26]

      Gabrisch, H.; Yi, T.; Yazami, R. Electrochem. Solid-State Lett. 2008, 11, A119.  doi: 10.1149/1.2919713

    27. [27]

      Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. J. Power Sources 2003, 119~121, 644.

    28. [28]

      Zhu, Z.; Yan, H.; Zhang, D.; Li, W.; Lu, Q. J. Power Sources 2013, 224, 13.  doi: 10.1016/j.jpowsour.2012.09.043

    29. [29]

      Shaju, K. M.; Bruce, P. G. Adv. Mater. 2006, 18, 2330.  doi: 10.1002/(ISSN)1521-4095

    30. [30]

      Wu, F.; Li, N.; Su, Y. F.; Shou, H. F.; Bao, L. Y.; Yang, W.; Zhang, L. J.; An, R.; Chen, S. Adv. Mater. 2013, 25, 3722.  doi: 10.1002/adma.v25.27

    31. [31]

      Striebel, K. A.; Sakai, E.; Cairns, E. J. J. Electrochem. Soc. 2002, 149, A61.  doi: 10.1149/1.1427075

    32. [32]

      Wang, L.; Zhao, J.; He, X.; Gao, J.; Li, J.; Wan, C.; Jiang, C. Int. J. Electrochem. Sci. 2012, 7, 345.

    33. [33]

      Mai, L.; Li, S.; Dong, Y.; Zhao, Y.; Luo, Y.; Xu, H. Nanoscale 2013, 5, 4864.  doi: 10.1039/c3nr01490h

    34. [34]

      Li, B.; Han, C.; He, Y. B.; Yang, C.; Du, H.; Yang, Q. H.; Kang, F. Energy Environ. Sci. 2012, 5, 9595.  doi: 10.1039/c2ee22591c

    35. [35]

      Zhou, P. F.; Meng, H. J.; Zhang, Z.; Chen, C. C.; Lu, Y. Y.; Cao, J.; Cheng, F. Y.; Chen, J. J. Mater. Chem. A 2017, 5, 2724.  doi: 10.1039/C6TA09921A

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    14. [14]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    17. [17]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

Metrics
  • PDF Downloads(1)
  • Abstract views(1166)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return