Citation: Peng Zhe, Ji Yingchun, Wang Zhi, Tong Bin, Shi Jianbing, Dong Yuping. Properties of Polymorphism and Acid Response of Pyrrolopyrrole-based Derivative with Aggregation-induced Emission Behavior[J]. Acta Chimica Sinica, ;2016, 74(11): 942-948. doi: 10.6023/A16080406 shu

Properties of Polymorphism and Acid Response of Pyrrolopyrrole-based Derivative with Aggregation-induced Emission Behavior

  • Corresponding author: Tong Bin, tongbin@bit.edu.cn Dong Yuping, chdongyp@bit.edu.cn
  • Received Date: 13 August 2016

    Fund Project: National Natural Science Foundation of China 51328302National Natural Science Foundation of China 21474009National Basic Research Program of China 973 Program: 2013CB834704

Figures(8)

  • A new A-D-A type pyrrolopyrrole-based derivative 4', 4"-(2, 5-diphenyl-pyrrolo[3, 2-b]pyrrole-1, 4-diyl) bis ([1, 1'-biphenyl]-4-carbonitrile) (DPPDC) was synthesized via Suzuki coupling reaction between 1, 4-bis (4-bromophenyl)-2, 5-diphenyl-1, 4-dihydropyrrolo[3, 2-b]pyrrole and 4-cyanophenylboronic acid. The fluorescent emission intensities of DPPDC in pure THF solution and lower fraction of water (φH2O≤60%) mixtures were weak at around 550 nm. When φH2O was 99% in THF/H2O mixtures, the emission was enhanced and blue-shifted at around 505 nm. The maximal fluorescent emission intensity of DPPDC was 11 times higher than that of in pure THF solution, indicating DPPDC exhibiting AIE property. It was also found that four different kinds of crystal structures of DPPDC was cultivated from CHCl2-Hexane, CHCl3-Hexane and CHCl3/Acetone-Hexane systems via solvent slow diffusion method. Four crystals respec-tively emitted blue, azure, green and turquoise at 467, 483, 496 and 493 nm, which manifested the polymorphism-dependent fluorescent emission property of DPPDC. Additionally, trifluoroacetic acid (TFA) could make the emitting color change from yellow to orange-red with as-prepared paper containing DPPDC due to the acid-base interaction. The obvious emitting color change of DPPDC can be used as a visual sensor to detect acid gas.
  • 加载中
    1. [1]

      Kim, S.; Kim, B.; Lee, J.; Shin, H.; Park, Y.; Park, J. Mat. Sci. Eng. R 2016, 99, 1; (b)) Zhao, Z.; Li, Z.; Lam, J. W. Y.; Maldonado, J. L.; Ramos-Ortiz, G.; Liu, Y.; Yuan, W.; Xu, J.; Miao, Q.; Tang, B. Z. Chem. Commun. 2011, 47, 6924; (c) Fujisawa, K.; Okuda, Y.; Izumi, Y.; Nagamatsu, A.; Rokusha, Y.; Sadaike, Y.; Tsutsumi, O. J. Mater. Chem. C 2014, 2, 3549; (d) Zhao, N.; Zhang, C.; Lam, J. W. Y.; Zhao, Y. S.; Tang, B. Z. Asian J. Org. Chem. 2014, 3, 118; (e) Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647; (f) Pan, L. X.; Luo, W. W.; Chen, M.; Liu, J. K.; Xu, L.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Chin. J. Org. Chem. 2016, 36, 1316. (潘凌翔, 罗文文, 陈明, 刘峻恺, 徐露, 胡蓉蓉, 赵祖金, 秦安军, 唐本忠, 有机化学, 2016, 36, 1316.)

    2. [2]

      Wang, K.; Zhang, H. Y.; Chen, S. Y.; Yang, G. C.; Zhang, J. B.; Tian, W. J.; Su, Z. M.; Wang, Y. Adv. Mater. 2014, 26, 6168.  doi: 10.1002/adma.201401114

    3. [3]

      Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L.; Zou, B.; Tian, W. J. Angew. Chem. Int. Ed. 2012, 51, 10782.  doi: 10.1002/anie.v51.43

    4. [4]

      Yoon, S. J.; Chung, J. W.; Gierschner, J.; Kim, K. S.; Choi, M. G.; Kim, D.; Park, S. Y. J. Am. Chem. Soc. 2010, 132, 13675.  doi: 10.1021/ja1044665

    5. [5]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    6. [6]

      Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B. Sci. Rep. 2013, 3, 1150; (b) Wang, D.; Qian, J.; Qin, W.; Qin, A.; Tang, B. Z.; He, S. Sci. Rep. 2014, 4, 4279; (c) Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165. (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165.); (d) Wang, C.; Zhang, H.; Tian, L.; Zhu, W.; Lan, Y.; Li, J.; Wang, H.; Zhang, G. X.; Zhang, D. Q.; Yuan, S. L.; Li, G. T. Sci. China Chem. 2016, 59, 89; (e) Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Curr. Org. Chem. 2010, 14, 2109; (f) Gu, X. G.; Yao, J. J.; Zhang, G. X.; Zhang, C.; Yan, Y. L.; Zhao, Y. S.; Zhang, D. Q. Chem.-Asian J. 2013, 8, 2362; (g) Li, Z. Z.; Huo, Y. P.; Yang, X. H.; Ji, S. M. Chin. J. Org. Chem. 2016, 36, 2317. (李宗植, 霍延平, 阳香华, 籍少敏, 有机化学, 2016, 36, 2317.)

    7. [7]

      Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.  doi: 10.1002/adma.201401356

    8. [8]

      He, Z. K.; Zhang, L. Q.; Mei, J.; Zhang, T.; Lam, J. W.Y.; Shuai, Z. G.; Dong, Y. Q.; Tang, B. Z. Chem. Mater. 2015, 27, 6601.  doi: 10.1021/acs.chemmater.5b02280

    9. [9]

      Xu, Y. X.; Wang, K.; Zhang, Y. J.; Xie, Z. Q.; Zou, B.; Ma, Y. G. J. Mater. Chem. C 2016, 4, 1257.  doi: 10.1039/C5TC03745J

    10. [10]

      Zhang, Z. Y.; Song, X. X.; Wang, S. P.; Li, F.; Zhang, H. Y.; Ye, K. Q.; Wang, Y. J. Phys. Chem. Lett. 2016, 7, 1697.  doi: 10.1021/acs.jpclett.6b00704

    11. [11]

      Krzeszewski, M.; Thorsted, B.; Brewer, J.; Gryko, D. T. J. Org. Chem. 2014, 79, 3119.  doi: 10.1021/jo5002643

    12. [12]

      Hisaki, I.; Sakamoto, Y.; Shigemitsu, H.; Tohnai, N.; Miyata, M. Cryst. Growth Des. 2009, 9, 414.  doi: 10.1021/cg800643e

    13. [13]

      Janiga, A.; Glodkowska-Mrowka, E.; Stoklosa, T.; Gryko, D. T. Asian J. Org. Chem. 2013, 2, 411.  doi: 10.1002/ajoc.v2.5

    14. [14]

      Peng, Z.; Feng, X.; Tong, B.; Chen, D. D.; Shi, J. B.; Zhi, J. G.; Dong, Y. P. Sensor Actuat. B 2016, 232, 264.  doi: 10.1016/j.snb.2016.03.136

    15. [15]

      Zhu, X. L.; Huang, H.; Liu, R.; Jin, X. D.; Li, Y. H.; Wang, D. F.; Wang, Q.; Zhu, H. J. J. Mater. Chem. C 2015, 3, 3774.  doi: 10.1039/C4TC02955K

  • 加载中
    1. [1]

      Pan Li Huguo Shen Cong Hua Jinjie Fang Xiangying Chi Quan Jiang Zichen Feng Ye Kang Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083

    2. [2]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    5. [5]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    6. [6]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    7. [7]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    8. [8]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    12. [12]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    13. [13]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    14. [14]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    15. [15]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    16. [16]

      Leyu DINGYing HEZhihe WEIYang PENGZhao DENG . Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2491-2502. doi: 10.11862/CJIC.20250176

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(0)
  • Abstract views(1530)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return