Citation: Zhang Guobin, Xiong Tengfei, Pan Xuelei, Yan Mengyu, Han Chunhua, Mai Liqiang. In Situ Observation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode[J]. Acta Chimica Sinica, ;2016, 74(7): 582-586. doi: 10.6023/A16030114 shu

In Situ Observation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode

  • Corresponding author: Mai Liqiang, mlq518@whut.edu.cn
  • Received Date: 3 March 2016

    Fund Project: National Science Fund for Distinguished Young Scholars 51425204the National Basic Research Program of China 2013CB934103International Science & Technology Cooperation Program of China 2013DFA50840the National Basic Research Program of China 2012CB933003

Figures(6)

  • As cathode materials in lithium-ion batteries, layered vanadium oxides have been extensively studied and used in many aspects varying from industrial production to our daily life, due to their excellent physical property and gorgeous lithium storage performance. During lithiation/delithiation, layered vanadium oxides such as V2O5 xerogel (with a bilayer structure), undergoes "lattice breathing" which leads to the deactivation of electrode materials and fast capacity fading, which limits its large-scale application. In this work, VOx is used as the cathode material of lithium-ion batteries to study the "lattice breathing" phenomenon. The phase evolution has been observed and studied via in situ method. The X-ray diffraction (XRD) patterns show typical (001) diffraction peaks characteristic of vanadium oxide xerogel structure and also confirm the good crystallinity. This compound with crystal parameters of a=4.56 Å, b=14.87 Å, c=12.38 Å, α=117.26°, β=96.02°, γ=81.86°, forms a triclinic structure. Results of scanning electron microscope (SEM) and transmission electron microscope (TEM) further verify the layered structure of VOx. The thermo gravimetric analysis (TGA) at air and nitrogen atmosphere shows that the carbon content of the sample is about 2.4 wt% and the water content is about 2.1%. As lithium-ion battery cathode the initial discharge capacity of the compound is about 136 mA·h/g at a current density of 100 mA/g, with a capacity retention of 92.6% after 50 cycles. To study the lithium storage mechanism of VOx, electrochemical discharge/charge processes are further investigated by in situ XRD. It is found that the lattice plane diffraction displays three different stages linked during the insertion and deinsertion of lithium ions, indicating three solid solution reactions. During discharge process, the three diffraction changes show continuous shifts to higher diffraction angles, demonstrating three different continuous contraction processes with the insertion of lithium ions. Nevertheless, the evolution of the (001) peak is swift during the beginning and the end of discharge, in contrast to the slow deviation of the intermediate process. In the whole process, the diffraction pattern displays periodic changes, confirming the reversibility of the reaction process. The corresponding calculations of d001 during the discharge/charge process prove the notable discontinuity between these three stages. In addition, cycling experiments conducted at the higher and the lower temperature indicate that the electrochemical performance of this compound is highly sensitive to temperature.
  • 加载中
    1. [1]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.

    2. [2]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338.  doi: 10.1039/c3ee40847g

    3. [3]

      Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. ChemInform 2013, 44, 3127.

    4. [4]

      An, T. C; Wang, Y. H.; Tang, J.; Wang, Y.; Zhang, L. J.; Zheng, G. F. J. Colloid Interface Sci. 2015, 445, 320.  doi: 10.1016/j.jcis.2015.01.012

    5. [5]

      Kim, H.; Hong, J. H.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114, 11788.  doi: 10.1021/cr500232y

    6. [6]

      Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.  doi: 10.1021/am501627f

    7. [7]

      Lyu, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013.
       

    8. [8]

      Feng, R.; Wang, L. W.; Lyu, Z. Y.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 653.  doi: 10.6023/A14030227
       

    9. [9]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  doi: 10.1038/451652a

    10. [10]

      Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Nano Res. 2014, 7, 1.  doi: 10.1007/s12274-013-0375-x

    11. [11]

      Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81.  doi: 10.1039/C4EE03192J

    12. [12]

      Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502.  doi: 10.1126/science.1241488

    13. [13]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.

    14. [14]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992.  doi: 10.1002/adma.201304138

    15. [15]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  doi: 10.1038/35035045

    16. [16]

      Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Chem. Rev. 2013, 113, 5364.  doi: 10.1021/cr3001884

    17. [17]

      Wei, Q. L.; Tan, S. S.; Liu, X. Y.; Yan, M. Y.; Wang, F. C.; Li, Q. D.; An, Q. Y.; Sun, R. M.; Zhao, K. N.; Wu, H. A. Adv. Funct. Mater. 2015, 25, 1773.  doi: 10.1002/adfm.201404311

    18. [18]

      Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526.  doi: 10.1039/b819629j

    19. [19]

      Dai, L.; Gao, Y. F.; Cao, C. X.; Chen, Z.; Luo, H. J.; Kanehira, M.; Jin, J.; Liu, Y. RSC Adv. 2012, 2, 5265.  doi: 10.1039/c2ra20587d

    20. [20]

      Wang, C. Q.; Liu, X. L.; Shao, J.; Xiong, W. M.; Ma, W. J.; Zheng, Y. RSC Adv. 2014, 4, 64021.  doi: 10.1039/C4RA12392A

    21. [21]

      Murugan, A. V.; Kale, B. B.; Kwon, C. W.; Campet, G.; Vijayamohanan, K. J. Mater. Chem. 2001, 11, 2470.  doi: 10.1039/b100714i

    22. [22]

      Wang, Y.; Cao, G. Z. Chem. Mater. 2006, 18, 2787.  doi: 10.1021/cm052765h

    23. [23]

      Wang, Y.; Takahashi, K.; Lee, K. H.; Cao, G. Z. Adv. Funct. Mater. 2006, 16, 1133.  doi: 10.1002/(ISSN)1616-3028

    24. [24]

      Sathiya, M.; Prakash, A. S.; Ramesha, K.; Tarascon, J. M.; Shukla, A. K. J. Am. Chem. Soc. 2011, 133, 16291.  doi: 10.1021/ja207285b

    25. [25]

      Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  doi: 10.1021/cr020731c

    26. [26]

      Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. ACS Appl. Mater. Interfaces 2015, 7, 18211.  doi: 10.1021/acsami.5b06154

    27. [27]

      Wei, Q. L.; Liu, J.; Feng, W.; Sheng, J. Z.; Tian, X. C.; He, L.; An, Q. Y.; Mai, L. Q. J. Mater. Chem. A 2015, 3, 8070.  doi: 10.1039/C5TA00502G

    28. [28]

      Zhao, Y. L.; Han, C. H.; Yang, J. W.; Su, J.; Xu, X. M.; Li, S.; Xu, L.; Fang, R. P.; Jiang, H.; Zou, X. D. Nano Lett. 2015, 15, 2180.  doi: 10.1021/acs.nanolett.5b00284

    29. [29]

      Zhou, Y. N.; Ma, J.; Hu, E. Y.; Yu, X. Q.; Gu, L.; Nam, K. W.; Chen, L. Q.; Wang, Z. X.; Yang, X. Q. Nat. Commun. 2013, 5, 5381.

    30. [30]

      Liu, Q.; Li, Z. F.; Liu, Y. D.; Zhang, H. Y.; Ren, Y.; Sun, C. J.; Lu, W. Q.; Zhou, Y.; Stanciu, L.; Stach, E. A.; Xie, J. Nat. Commun. 2015, 6, 6127.  doi: 10.1038/ncomms7127

    31. [31]

      Dong, Y. F.; Xu, X. M.; Li, S.; Han, C. H.; Zhao, K. N.; Zhang, L.; Niu, C. J.; Huang, Z.; Mai, L. Q. Nano Energy 2015, 15, 145.  doi: 10.1016/j.nanoen.2015.04.015

    32. [32]

      Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74.  doi: 10.1038/nmat2920

    33. [33]

      Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Science 2014, 344, 1451.  doi: 10.1126/science.1255819

    34. [34]

      Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2015, 8, 195.  doi: 10.1039/C4EE03045A

    35. [35]

      Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q.; Fu, Z. W. Sci. Rep. 2014, 5, 8810.

    36. [36]

      Li, Q. D.; Wei, Q. L.; Sheng, J. Z.; Yan, M. Y.; Zhou, L.; Luo, W.; Sun, R. M.; Mai, L. Q. Adv. Sci. 2015, 2, 1500284.  doi: 10.1002/advs.201500284

    37. [37]

      Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Adv. Energy Mater. 2013, 3, 1155.  doi: 10.1002/aenm.v3.9

    38. [38]

      Liao, X. Z.; Ma, Z. F.; Gong, Q.; He, Y. S.; Pei, L.; Zeng, L. Electrochem. Commun. 2008, 10, 691.  doi: 10.1016/j.elecom.2008.02.017

    39. [39]

      Yang, S.; Gong, Y.; Liu, Z.; Zhan, L.; Hashim, D. P.; Ma, L.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2013, 13, 1596.  doi: 10.1021/nl400001u

  • 加载中
    1. [1]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    9. [9]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    16. [16]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    17. [17]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(1176)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return