Citation: Dou Rongfei, Tan Xiaohe, Fan Yiqiu, Pei Yan, Qiao Minghua, Fan Kangnian, Sun Bin, Zong Baoning. Study on Ru-B/MIL-53(AlxCr1) Catalysts for Partial Hydrogenation ofBenzene to Cyclohexene[J]. Acta Chimica Sinica, ;2016, 74(6): 503-512. doi: 10.6023/A16020074 shu

Study on Ru-B/MIL-53(AlxCr1) Catalysts for Partial Hydrogenation ofBenzene to Cyclohexene

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 1 February 2016

    Fund Project: Science and Technology Commission of Shanghai Municipality  08DZ2270500the National Key Basic Research Program of China 2012CB224804Beijing Synchrotron Radiation Facility, and the China Petroleum & Chemical Corporation S411063the National Natural Science Foundation of China 21373055

Figures(12)

  • Metal-organic frameworks (MOFs) have attracted enormous research interests not only because of their merits such as high specific surface area, high porosity, and regular pore channels, but also due to their peculiarities of extremely abundant chemical and structural diversity and tunability. In this work, we synthesized MIL-53(Al) and MIL-53(Cr) containing one coordination metal and the novel MIL-53(AlxCr1)(x=1, 2, 3, and 4) MOFs containing two coordination metals as the supports for the Ru-B/MIL-53 catalysts, which were prepared by the facile impregnation-chemical reduction method. In the challenging partial hydrogenation of benzene to cyclohexene, it is revealed that the Al/Cr ratio had pronounced influences on both the initial hydrogenation rate (r0) and the initial selectivity to cyclohexene (S0). In general, MIL-53 containing a higher fraction of Al affords a higher r0, while MIL-53 containing both Al and Cr is conducive to a higher S0 than either MIL-53(Al) or MIL-53(Cr) containing only one coordination metal. On the Ru-B/MIL-53(Al3Cr1) catalyst exhibiting the highest selectivity to cyclohexene, the r0 and S0 were 9.2 mmol/(min·g) and 71%, respectively. The best Ru-B/MIL-53(Al3Cr1) catalyst and the Ru-B/MIL-53(Cr) catalyst displaying the lowest selectivity to cyclohexene were comparatively characterized to have an insight into the difference in their catalytic performance. It is found that while both catalysts had similar Ru/B molar ratio, electronic property, and microstructure, the Ru-B/MIL-53(Al3Cr1) catalyst had higher active surface area (Sact), smaller and more highly dispersed Ru-B nanoparticles (NPs), and stronger metal-support interaction than the Ru-B/MIL-53(Cr) catalyst. The smaller Ru-B NPs could not only provide more active sites for the hydrogenation of benzene, but also be beneficial to the formation of cyclohexene. By further optimization of the reaction conditions, at 180 ℃, H2 pressure of 5.0 MPa, and using 100 mL of ethanolamine as the modifier, a cyclohexene yield of 29% was obtained over the Ru-B/MIL-53(Al3Cr1) catalyst.
  • 加载中
    1. [1]

      Zhou, G. B.; Tan, X. H.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. ChemCatChem 2013, 5, 2425.  doi: 10.1002/cctc.201300175

    2. [2]

      Odenbrand, C. U. I.; Andersson, S. L. T. J. Chem. Technol. Biotechnol. 1982, 32, 365.
       

    3. [3]

      Wang, J. Q.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Fan, K. N. Acta Chim. Sinica 2004, 62, 1765.
       

    4. [4]

      Wang, W. T.; Liu, H. Z.; Ding, G. D.; Zhang, P.; Wu, T. B.; Jiang, T.; Han, B. X. ChemCatChem 2012, 4, 1836.  doi: 10.1002/cctc.v4.11

    5. [5]

      Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29.  doi: 10.1016/j.apcata.2004.04.038

    6. [6]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.6023/A15080547
       

    7. [7]

      Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.  doi: 10.1126/science.1083440

    8. [8]

      Sun, L.; Deng, W. Q. Acta Chim. Sinica 2015, 73, 579.  doi: 10.6023/A15030192
       

    9. [9]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.  doi: 10.1039/b802426j

    10. [10]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.  doi: 10.1039/b807080f

    11. [11]

      Ren, H.; Zhu, G. S. Acta Chim. Sinica 2015, 73, 587.  doi: 10.6023/A15010071
       

    12. [12]

      Liu, Y.; Mo, K.; Cui, Y. Inorg. Chem. 2013, 52, 10286.  doi: 10.1021/ic400598x

    13. [13]

      Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Angew. Chem. Int. Ed. 2006, 45, 4112.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Zhao, H. H.; Song, H. L.; Chou, L. J. Inorg. Chem. Commun. 2012, 15, 261.  doi: 10.1016/j.inoche.2011.10.040

    15. [15]

      Wan, Y.; Chen, C.; Xiao, W. M.; Jian, L. J.; Zhang, N. Microporous Mesoporous Mater. 2013, 171, 9.  doi: 10.1016/j.micromeso.2013.01.005

    16. [16]

      Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. ACS Catal. 2014, 4, 1340.  doi: 10.1021/cs400982n

    17. [17]

      Luz, I.; Rösler, C.; Epp, K.; Xamena, F. L.; Fischer, R. Eur. J. Inorg. Chem. 2015, 23, 3904.
       

    18. [18]

      Chen, D. C.; Huang, M.; He, S.; He, S. L.; Ding, L. P.; Wang, Q.; Yu, S. M.; Miao, S. D. Appl. Clay Sci. 2016, 119, 109.  doi: 10.1016/j.clay.2015.07.011

    19. [19]

      Tan, X. H.; Zhou, G. B.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Acta Phys.-Chim. Sin. 2014, 30, 932.
       

    20. [20]

      Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519.  doi: 10.1021/ja0276974

    21. [21]

      Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem.-Eur. J. 2004, 10, 1373.  doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Zhao, Y. J.; Zhang, J. L.; Han, B. X.; Song, J. L.; Li, J. S.; Wang, Q. Angew. Chem. Int. Ed. 2011, 50, 636.  doi: 10.1002/anie.v50.3

    23. [23]

      Liu, H. Z.; Liang, S. G.; Wang, W. T.; Jiang, T.; Han, B. X. J. Mol. Catal. A 2011, 341, 35.  doi: 10.1016/j.molcata.2011.03.021

    24. [24]

      Millange, F.; Serre, C.; Férey, G. Chem. Commun. 2002, (8), 822.  doi: 10.1039/b201381a

    25. [25]

      Sun, Z. G.; Li, G.; Liu, L. P.; Liu, H. O. Catal. Commun. 2012, 27, 200.  doi: 10.1016/j.catcom.2012.07.017

    26. [26]

      Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal. A 2009, 353, 282.  doi: 10.1016/j.apcata.2008.10.056

    27. [27]

      Larichev, Y. V.; Moroz, B. L.; Zaikovskii, V. I.; Yunusov, S. M.; Kalyuzhnaya, E. S.; Shur, V. B.; Bukhtiyarov, V. I. J. Phys. Chem. C 2007, 111, 9427.  doi: 10.1021/jp066970b

    28. [28]

      Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L'Argentière, P.; Fıgoli, N. Appl. Surf. Sci. 2003, 210, 222.  doi: 10.1016/S0169-4332(03)00146-6

    29. [29]

      Xie, S. H.; Qiao, M. H.; Li, H. X.; Wang, W. J.; Deng, J. F. Appl. Catal. A 1999, 176, 129.  doi: 10.1016/S0926-860X(98)00232-4

    30. [30]

      Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Chem. Soc. Rev. 2012, 41, 8140.  doi: 10.1039/c2cs35182j

    31. [31]

      Pei, Y.; Guo, P. J.; Qiao, M. H.; Li, H. X.; Wei, S. Q.; He, H. Y.; Fan, K. N. J. Catal. 2007, 248, 303.  doi: 10.1016/j.jcat.2007.03.024

    32. [32]

      Wang, X. G.; Yan, W. S.; Zhong, W. J.; Zhang, X. Y.; Wei, S. Q. Chem. J. Chin. Univ. 2001, 22, 349.
       

    33. [33]

      Bu, J.; Wang, J. Q.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Fan, K. N. Acta Chim. Sinica 2007, 65, 1338.
       

    34. [34]

      Ronchin, L.; Toniolo, L. Catal. Today 1999, 48, 255.  doi: 10.1016/S0920-5861(98)00380-0

    35. [35]

      Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Ed. 2011, 50, 10453.  doi: 10.1002/anie.201104959

    36. [36]

      Spod, H.; Lucas, M.; Claus, P. Catalysts 2015, 5, 1756.  doi: 10.3390/catal5041756

    37. [37]

      Sun, H. J.; Li, S. H.; Zhang, Y. X.; Jiang, H. B.; Qu, L. L.; Liu, S. C. Liu, Z. Y. Chin. J. Catal. 2013, 34, 1482.  doi: 10.1016/S1872-2067(12)60637-8

    38. [38]

      Zhou, G. B.; Dou, R. F.; Bi, H. Z.; Xie, S. H.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. J. Catal. 2015, 332, 119.  doi: 10.1016/j.jcat.2015.09.016

    39. [39]

      Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F. O.; Férey, G. R. J. Am. Chem. Soc. 2008, 130, 16926.  doi: 10.1021/ja8039579

  • 加载中
    1. [1]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    13. [13]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    20. [20]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

Metrics
  • PDF Downloads(0)
  • Abstract views(793)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return