Citation: Chen Jinping, Du Xinfeng, Yu Tianjun, Zeng Yi, Zhang Xiaohui, Li Yi. Ligand Substituent Effects on Rhenium Tricarbonyl Catalysts in CO2 Reduction[J]. Acta Chimica Sinica, ;2016, 74(6): 523-528. doi: 10.6023/A16010067 shu

Ligand Substituent Effects on Rhenium Tricarbonyl Catalysts in CO2 Reduction

  • Corresponding author: Chen Jinping, chenjp@mail.ipc.ac.cn Li Yi, yili@mail.ipc.ac.cn
  • Received Date: 29 January 2016

    Fund Project: the National Natural Science Foundation of China 21233011the National Natural Science Foundation of China 21472201the National Basic Research Program 2013CB834505the National Natural Science Foundation of China 21573266the National Basic Research Program 2013CB834700

Figures(7)

  • The Re (I) complexes originally reported by Lehn et al. is one of the most important catalysts used for photocatalytical reduction of CO2 in homogeneous system. The mechanism for the photocatalytic reduction of CO2 to CO with Re (I) complexes has been thoroughly investigated recently. In this study, a series of rhenium tricarbonyl catalysts (Re-Me, Re-Ac, Re-Qa and Re-Im) with different substituents on 2, 2-bipyridine ligand were synthesized and characterized. These catalysts were successfully applied to a light induced CO2 reduction system with triethanolamine (TEOA) as sacrificial reagent, exhibiting different turnover numbers for different catalysts. The highest turnover number was achieved for the catalyst of Re-Qa, and Re-Me and Re-Ac exhibit similar activity, while Re-Im exhibits almost no activity in the photocatalytic conversion of CO2 to CO. UV-vis spectra show that the rate of deactivation is linked to the decomposition of the catalysts in the photocatalytic system. No decomposition was observed in the absence of TEOA, suggesting that the deactivation occurs via the intermediate of one-electron-reduced (OER) species. The transient absorption spectra conformed the formation of OER in the catalytic system. The reasons for the highest turnover number of Re-Qa may be attributed to the quaternary ammonium salt group, which can serve as a mediator to facilitate the reduction process. While in the case of Re-Im, the imidazolium group might accelerate the deactivation of OER species by an intramolecular interaction. Further experiments on this effect are the subject of ongoing investigations.
  • 加载中
    1. [1]

      Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010, 254, 346; (b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem., Int. Ed. 2013, 52, 7372; (c) Tahir, M.; Amin, N. S. Renew. Sust. Energ. Rev. 2013, 25, 560; (d) Chen, J. P.; Du, X. F.; Yu, T. J.; Zeng, Y.; Zhang, X. H.; Li, Y. Imag. Sci. Photochem. 2015, 33, 358.(陈金平, 都新丰, 于天君, 曾毅, 张小辉, 李嫕, 影像科学与光化学, 2015, 33, 358.)

    2. [2]

      Fujita, E. Coord. Chem. Rev. 1999, 185-6, 373.

    3. [3]

      Hawecker, J.; Lehn, J. M.; Ziessel, R. J. Chem. Soc., Chem. Comm. 1983, 536.

    4. [4]

      Sullivan, B. P.; Meyer, T. J. Organometallics 1986, 5, 1500; (b) Gibson, D. H.; Yin, X. L. J. Am. Chem. Soc. 1998, 120, 11200; (c) Gibson, D. H.; Yin, X. L.; He, H. Y.; Mashuta, M. S. Organometallics 2003, 22, 337; (d) Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. J. Am. Chem. Soc 2003, 125, 11976.

    5. [5]

      Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H. J. Am. Chem. Soc. 2014, 136, 6021.  doi: 10.1021/ja500403e

    6. [6]

      Morimoto, T.; Nishiura, C.; Tanaka, M.; Rohacova, J.; Nakagawa, Y.; Funada, Y.; Koike, K.; Yamamoto, Y.; Shishido, S.; Kojima, T.; Saeki, T.; Ozeki, T.; Ishitani, O. J. Am. Chem. Soc. 2013 135, 13266.  doi: 10.1021/ja406144h

    7. [7]

      Meister, S.; Reithmeier, R. O.; Tschurl, M.; Heiz, U.; Rieger, B. ChemCatChem 2015, 7, 690.  doi: 10.1002/cctc.201402984

    8. [8]

      Manbeck, G. F.; Muckerman, J. T.; Szalda, D. J.; Himeda, Y.; Fujita, E. J. Phys. Chem. B 2015, 119, 7457; (b) Benson, E. E.; Grice, K. A.; Smieja, J. M.; Kubiak, C. P. Polyhedron 2013, 58, 229.

    9. [9]

      Oh, Y.; Hu, X. Chem. Soc. Rev. 2013, 42, 2253; (b) Taniguchi, I.; Aurianblajeni, B.; Bockris, J. O. J. Electroanal. Chem. 1984, 161, 385.

    10. [10]

      Kalyanasundaram, K. J. Chem. Soc. Faraday Trans. 2 1986, 82, 2401.

    11. [11]

      Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, 1414.

    12. [12]

      Smieja, J. M.; Kubiak, C. P. Inorg. Chem. 2010, 49, 9283.  doi: 10.1021/ic1008363

    13. [13]

      Kamber, N. E.; Tsujii, Y.; Keets, K.; Waymouth, R. M.; Pratt, R. C.; Nyce, G. W.; James, L.; Hedrick, J. L. J. Chem. Educ. 2010, 87, 519; (b) Gu, S.; Huang, J.; Chen, W. Chin. J. Org. Chem. 2013, 33, 715.(顾绍金, 黄菁菁, 陈万芝, 有机化学, 2013, 33, 715.)

    14. [14]

      Dellaciana, L.; Hamachi, I.; Meyer, T. J. J. Org. Chem. 1989, 54, 1731.  doi: 10.1021/jo00268a042

    15. [15]

      Xun, Z.; Yu, T.; Zeng, Y.; Chen, J.; Zhang, X.; Yang, G.; Li, Y. J. Mater. Chem. A 2015, 3, 12965.  doi: 10.1039/C5TA02565F

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    20. [20]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

Metrics
  • PDF Downloads(0)
  • Abstract views(1173)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return