Citation: CHEN Hui-Qing, ZHANG Kun, XU Feng, HUANG Wei. Progress of the C-C Bond Cleavage in Acetonitrile Catalyzed by Transition-Metal Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2265-2275. doi: 10.3969/j.issn.1001-4861.2013.00.352 shu

Progress of the C-C Bond Cleavage in Acetonitrile Catalyzed by Transition-Metal Complexes

  • Received Date: 23 January 2013
    Available Online: 22 May 2013

    Fund Project: 国家自然科学基金(No.21171088) (No.21171088)

  • The cleavage of C-C bond is one sort of important and challenging reactions, and much attention has been focused upon the catalytic reactions of the C-C bond cleavage of nitriles during the last few decades. As a commonly used organic solvent, acetonitrile is the smallest one among nitriles. Based on the recent investigations, this paper summarizes the related research advancements of the cleavage of C-C bond in acetonitrile catalyzed by transition-metal complexes, analyses the present problems and gives the researching prospects of this type of reactions.
  • 加载中
    1. [1]

      [1] Yu D H, Shen Q L, Lu L. J. Org. Chem., 2012,77:1798-804

    2. [2]

      [2] Murahashi S I, Nakae T, Terai H, et al. J. Am. Chem. Soc., 2008,130:11005-11012

    3. [3]

      [3] Gunay A, Jones W D. J. Am. Chem. Soc., 2007,129:8729-8735

    4. [4]

      [4] Hughes R P, Laritchev R B, Zakharov L N, et al. J. Am. Chem. Soc., 2005,127:6325-6334

    5. [5]

      [5] Jun C H. Chem. Soc. Rev., 2004,33:610-618

    6. [6]

      [6] Hughes R P, Zhang D H, Zakharov L N, et al. Organometallics, 2002,1:4902-4904

    7. [7]

      [7] Mueller C, Lachicotte R J, Jones W D. Organometallics, 2002, 21:1975-1981

    8. [8]

      [8] Ananikov V P, Musaev D G, Morokuma K. J. Am. Chem. Soc., 2002,124:2839-2852

    9. [9]

      [9] Jun C H, Lee D Y, Kim Y H, et al. Organometallics, 2001, 20:2928-2931

    10. [10]

      [10]Cohen R, Van der Boom M E, Shimon L J W, et al. J. Am. Chem. Soc., 2000,122:7723-7734

    11. [11]

      [11]Meredith J M, Robinson R, Goldberg K I, et al. Organome-tallics, 2012,31:1879-1887

    12. [12]

      [12]Han Y F, Lin Y J, Hor T S A, et al. Organometallics, 2012, 31:995-1000

    13. [13]

      [13]Baillie R A, Tran T, Lalonde K M, et al. Organometallics, 2012,31:1055-1067

    14. [14]

      [14]Balcells D, Clot E, Eisenstein O. Chem. Rev., 2010,110: 749-823

    15. [15]

      [15]Michel C, Belanzoni P, Gamez P, et al. Inorg. Chem., 2009, 48:11909-11920

    16. [16]

      [16]Zakzeski J, Behn A, Head-Gordon M, et al. J. Am. Chem. Soc., 2009,131:11098-11105

    17. [17]

      [17]Fout A R, Scott J, Miller D L, et al. Organometallics, 2009, 28:331-347

    18. [18]

      [18]Ohki Y, Hatanaka T, Tatsumi K. J. Am. Chem. Soc., 2008, 130:17174-17186

    19. [19]

      [19]Nakao Y, Kashihara N, Kanyiva K S, et al. J. Am. Chem. Soc., 2008,130:16170-16171

    20. [20]

      [20]Whited M T, Grubbs R H. Organometallics, 2008,27:5737-6042

    21. [21]

      [21]Kavara A, Cousineau K D, Rohr A D, et al. Organometallics, 2008,27:1041-1043

    22. [22]

      [22]Zimmermann M, Estler F, Herdtweck E, et al. Organometallics, 2007,26:6029-6041

    23. [23]

      [23]Liang L C, Chien P S, Huang Y L. J. Am. Chem. Soc., 2006,128:15562-15563

    24. [24]

      [24]Liang L C, Lin J M, Lee W Y. Chem. Commun., 2005:2462-2464

    25. [25]

      [25]Kumar R K, Ali M A, Punniyamurthy T. Org. Lett., 2011, 13:2102-2105

    26. [26]

      [26]Novarino E, Guerrero Rios I, S van der Veer, et al. Organo-metallics, 2011,30:92-99

    27. [27]

      [27]Ke Z F, Cundari T R. Organometallics, 2010,29:821-834

    28. [28]

      [28]Hu Y C, Tsai C C, Shih W C, et al. Organometallics, 2010, 29:516-518

    29. [29]

      [29]Sabiah S, Lee C S, Hwang W S, et al. Organometallics, 2010,29:290-293

    30. [30]

      [30]Zhu B, Wang G W. Org. Lett., 2009,11:4334-4337

    31. [31]

      [31]Erhardt S, Grushin V V, Kilpatrick A H, et al. J. Am. Chem. Soc., 2008,130:4828-4845

    32. [32]

      [32]Cameron T M, Abboud K A, Boncella J M. Chem. Commun., 2001,13:1224-1225

    33. [33]

      [33]Kumar R K, Ali M A, Punniyamurthy T. Org. Lett., 2011, 13:2102-2105

    34. [34]

      [34]Burmeister J L, Edwards L M. J. Chem. Soc. A, 1971:1663-1666

    35. [35]

      [35]Gerlach D H, Kane A R, Parshall G W, et al. J. Am. Chem. Soc., 1971,93:3543-3544

    36. [36]

      [36]Cassar L. J. Organomet. Chem., 1973,54:C57-C58

    37. [37]

      [37]Parshall G W. J. Am. Chem. Soc., 1974,96:2360-2366

    38. [38]

      [38]Favero G, Morvillo A, Turco A. J. Organomet. Chem., 1983, 241:251-257

    39. [39]

      [39]Miller J A. Tetrahedron Lett., 2001,42:6991-6993

    40. [40]

      [40]Bianchini C, Masi D, Meli A, et al. Organometallics, 1986, 5:1670-1675

    41. [41]

      [41]Abla M, Yamamoto T. J. Organomet. Chem., 1997,532:267-270

    42. [42]

      [42]Brunkan N M, Brestensky D M, Jones W D. J. Am. Chem. Soc., 2004,126:3627-3641

    43. [43]

      [43]Liu Q X, Xu F B, Li Q S, et al. Organometallics, 2004,23: 610-614

    44. [44]

      [44]Nishihara Y, Inoue Y, Itazaki M, et al. Org. Lett., 2005,7: 2639-2641

    45. [45]

      [45]Garcia J J, Brunkan N M, Jones W D. J. Am. Chem. Soc., 2002,124:9547-9555

    46. [46]

      [46]Garcia J J, Arevalo A, Brunkan N M, et al. Organometallics, 2004,23:3997-4002

    47. [47]

      [47]Brunkan N M, Brestensky D M, Jones W D. J. Am. Chem. Soc., 2004,126:3627-3641

    48. [48]

      [48]Atesin T A, Li T, Lachaize S, et al. J. Am. Chem. Soc., 2007,129:7562-7562

    49. [49]

      [49]Swartz B D, Reinartz N M, Brennessel W W, et al. J. Am. Chem. Soc., 2008,130:8548-8554

    50. [50]

      [50]Evans M E, Li T, Jones W D. J. Am. Chem. Soc., 2010, 132:16278-16284

    51. [51]

      [51]Tanabe T, Evans M E, Brennessel W W, et al. Organomet-allics, 2011,30:834-843

    52. [52]

      [52]Evans M E, Jones W D. Organometallics, 2011,30:3371-3377

    53. [53]

      [53]Taw F L, White P S, Bergman R G, et al. J. Am. Chem. Soc., 2002,124:4192-4193

    54. [54]

      [54]Taw F L, Mueller A H, Bergman R G, et al. J. Am. Chem. Soc., 2003,125:9808-9813

    55. [55]

      [55]Klei S R, Tilley T D, Bergman R G. Organometallics, 2002, 21:4648-4661

    56. [56]

      [56]Evans M E, Li Ting, Jones W D. J. Am. Chem. Soc., 2010, 132:16278-16284

    57. [57]

      [57]Nakazawa H, Kawasaki T, Miyoshi K, et al. Organometallics, 2004,23:117-126

    58. [58]

      [58]Nakazawa H, Kamata K, Itazaki M. Chem. Commun., 2005: 4004-4006

    59. [59]

      [59]Nakazawa H, Itazaki M, Kamata K, et al. Chem. Asian J., 2007,2:882-888

    60. [60]

      [60]Churchill D, Shin J H, Hascall T, et al. Organometallics, 1999,18:2403-2406

    61. [61]

      [61]Liu Q X, Xu F B, Li Q S, et al. Organometallics, 2004,23: 610-614

    62. [62]

      [62]Zhang X M, Fang R Q. Inorg. Chem., 2005,44:3955-3959

    63. [63]

      [63]Guo L R, Bao S S, Li Y Z, et al. Chem. Commun., 2009: 2893-2895

    64. [64]

      [64]Marlin D S, Olmstead M M, Mascharak P K. Angew. Chem. Int. Ed., 2001,40:4752-4754

    65. [65]

      [65]Li L L, Liu L L, Ren Z G, et al. Cryst. Eng. Comm., 2009, 11:2751-2756

    66. [66]

      [66]Zhu Y L, Qu L L, Zhang J, et al. Inorg. Chem. Commun., 2011,14:1644-1647

    67. [67]

      [67]Cui J H, Huang L F, Lu Z Z, et al. Cryst. Eng. Comm., 2012,14:2258-2267

    68. [68]

      [68]Lu T B, Zhuang X M, Li Y W, et al. J. Am. Chem. Soc., 2004,126:4760-4761

    69. [69]

      [69]Bond A D, Derossi S, Jensen F, et al. Inorg. Chem., 2005, 44:5987-5989

    70. [70]

      [70]Yang L Z, Li Y, Zhuang X M, et al. Chem. Eur. J., 2009,15: 12399-12407

    71. [71]

      [71]Xu F, Huang W, You X Z. Dalton Trans., 2010,39:10652-10658

    72. [72]

      [72]Xu F, Tao T, Zhang K, et al. Dalton Trans., 2013,42:3631-3645

    73. [73]

      [73]Huang W, Xu F, You X Z. Chinese Patent, 201010123274.1. 2012-05-23.

    74. [74]

      [74]Xu F, Tao T, Liu Q Q, et al. Inorg. Chim. Acta, 2012,392: 465-468

    75. [75]

      [75]Hu B, Fu S J, Xu F, et al. J. Org. Chem., 2011,76:4444-4456

    76. [76]

      [76]Xu F, Peng Y X, Hu B, et al. CrystEngComm, 2012,14: 8023-8032

    77. [77]

      [77]Huang W, Tanaka H, Ogawa T. J. Phys. Chem. C, 2008, 112:11513-11526

    78. [78]

      [78]Huang W, Masuda G, Maeda S, et al. Inorg. Chem., 2008, 47:468-480

    79. [79]

      [79]Wang L, You W, Huang W, et al. Inorg. Chem., 2009,48: 4295-4305

    80. [80]

      [80]Huang W, Wang L, Tanaka H, et al. Eur. J. Inorg. Chem., 2009:1321-1331

    81. [81]

      [81]Zhang B, Cao K S, Xu Z A, et al. Eur. J. Inorg. Chem., 2012,24:3844-3851

    82. [82]

      [82]Huang W, Tanaka H, Ogawa T, et al. Adv. Mater., 2010, 22:2753-2758

    83. [83]

      [83]Hu B, Xu F, Fu S J, et al. Inorg. Chim. Acta, 2010,363: 1348-1354

    84. [84]

      [84]Wang L, Tao T, Fu S J, et al. CrystEngComm, 2011,13:747-749

    85. [85]

      [85]Fu S J, Wang L, Tao T, et al. CrystEngComm, 2011,13: 6192-6199

    86. [86]

      [86]Hu B, Liu Q Q, Tao T, et al. Inorg. Chim. Acta, 2013,394: 576-582

    87. [87]

      [87]Tao T, Peng Y X, Huang W, et al. J. Org. Chem., 2013,78: 2472-2481

    88. [88]

      [88]Hu B, Chen X X, Huang W, et al. Dalton Trans., 2012,41: 14309-14315

    89. [89]

      [89]Tao T, Wang X X, Wang Y N, et al. Inorg. Chem. Commun., 2013,31:62-65

    90. [90]

      [90]XU Feng(徐枫). Thesis for the Doctorate of Nanjing University(南京大学博士论文). 2012.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(270)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return