Citation: YANG Feng-Yu, ZHANG Lei-Lei, XU Ji-Jing, LIU Qing-Chao, ZHAO Min-Shou, ZHANG Xin-Bo. Progress of Cathode Material and Electrolyte in Non-aqueous Li-Air Battery[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1563-1573. doi: 10.3969/j.issn.1001-4861.2013.00.304 shu

Progress of Cathode Material and Electrolyte in Non-aqueous Li-Air Battery

  • Received Date: 3 April 2013
    Available Online: 17 May 2013

    Fund Project: 国家重点基础研究发展计划(No.2012CB215500) (No.2012CB215500)国家自然科学基金(No.20921002,21101147,21203176)资助项目。 (No.20921002,21101147,21203176)

  • A Li-air battery could provide much higher energy density than conventional lithium-ion battery, which is comparable to gasoline and, thus, many attentions have been paid to the Li-air battery in recent years. This paper summarizes the latest development of the cathode material and electrolyte in the non-aqueous Li-air battery. The cathode materials concern commercial carbon, artificial carbon with a defined morphology, catalyst and conducting polymer. Electrolytes concern widely used solvents including ester, ether, sulfone, amine and ionic liquid. Finally, the main problems in the non-aqueous Li-air battery have been pointed out and look forward to the future on non-aqueous Li-air battery.
  • 加载中
    1. [1]

      [1] Wang X J, Hou Y Y, Zhu Y S, et al. Sci. Rep., 2013,3:1401-1405

    2. [2]

      [2] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2011,11(1):19-29

    3. [3]

      [3] Abraham K M. ECS Trans., 2008,3(42):67-71

    4. [4]

      [4] Armand M, Tarascon J M. Nature, 2008,451(7179):652-657

    5. [5]

      [5] Zhang T, Zhou H. Nat. Commun., 2013,4:1817-1823

    6. [6]

      [6] Li L J, Zhao X S, Fu Y Z, et al. Phys. Chem. Chem. Phys., 2012,14(37):12737-12740

    7. [7]

      [7] Lu Y C, Crumlin E J, Veith G M, et al. Sci. Rep., 2012,2: 715-720

    8. [8]

      [8] Girishkumar G, McCloskey B, Luntz A, et al. J. Phys. Chem. Lett., 2010,1(14):2193-2203

    9. [9]

      [9] Shao Y Y, Ding F, Xiao J, et al. Adv. Funct. Mater., 2012, 23:987-1004

    10. [10]

      [10] Ishihara T, Thapa A K, Hidaka Y, et al. Electrochemistry, 2012,80(10):731-733

    11. [11]

      [11] Abraham K M, Jiang Z. J. Electrochem. Soc., 1996,143(1):1-5

    12. [12]

      [12] Ogasawara T, Débart A, Holzapfel M, et al. J. Am. Chem. Soc., 2006,128(4):1390-1393

    13. [13]

      [13] Lu Y C, Xu Z C, Gasteiger H A, et al. J. Am. Chem. Soc., 2010,132(35):12170-12171

    14. [14]

      [14] Peled E, Golodnitsky D, Mazor H, et al. J. Power Sources, 2011,196(16):6835-6840

    15. [15]

      [15] Zheng J P, Liang R Y, Hendrickson M, et al. J. Electrochem. Soc., 2008,155(6):A432-A437

    16. [16]

      [16] Read J. J. Electrochem. Soc., 2002,149(9):A1190-A1195

    17. [17]

      [17] Read J, Mutolo K, Ervin M, et al. J. Electrochem. Soc., 2003,150(10):A1351-A1356

    18. [18]

      [18] Xiao J, Hu J, Wang D, et al. J. Power Sources, 2011,196 (13):5674-5678

    19. [19]

      [19] WANG Fang(王芳), LIANG Chun-Sheng(梁春生), XU Da-Liang(徐大亮), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2012,27:1233-1242

    20. [20]

      [20] Beattie S D, Manolescu D M, Blair S L. J. Electrochem. Soc., 2009,156(1):A44-A47

    21. [21]

      [21] WU Wei(武威), TIAN Yan-Yan(田艳艳), GAO Jun(高军), et al. Chin. J. Power Sources(Dianyuan Jishu), 2012,36:581-586

    22. [22]

      [22] Kichambare P, Kumar J, Rodrigues S, et al. J. Power Sources, 2011,196(6):3310-3316

    23. [23]

      [23] Yang X H, He P, Xia Y Y. Electrochem. Commun., 2009,11 (6):1127-1130

    24. [24]

      [24] Nakanishi S, Mizuno F, Nobuhara K, et al. Carbon, 2012,50 (13):4794-4803

    25. [25]

      [25] Zhang G Q, Zheng J P, Liang R, et al. J. Electrochem. Soc., 2010,157(8):A953-A956

    26. [26]

      [26] Mitchell R R, Gallant B M, Thompson C V, et al. Energy Environ. Sci., 2011,4(8):2952-2958

    27. [27]

      [27] Xiao J, Mei D H, Li X L, et al. Nano Lett., 2011,11(11): 5071-5078

    28. [28]

      [28] Li Y L, Wang J J, Li X F, et al. Chem. Commun., 2011,47 (33):9438-9440

    29. [29]

      [29] Xiao J, Wang D H, Xu W, et al. J. Electrochem. Soc., 2010, 157(4):A487-A492

    30. [30]

      [30] Ren X M, Zhang S S, Tran D T, et al. J. Mater. Chem., 2011,21(27):10118-10125

    31. [31]

      [31] Jung H G, Hassoun J, Park J B, et al. Nature Chem., 2012, 4:579-585

    32. [32]

      [32] Wang Z L, Xu D, Xu J J, et al. Adv. Funct. Mater., 2012,22 (17):3699-3705

    33. [33]

      [33] Lim H D, Park K Y, Song H, et al. Adv. Mater., 2013,25: 1348-1352

    34. [34]

      [34] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. J. Am. Chem. Soc., 2012,135(1):494-500

    35. [35]

      [35] Cui Y M, Wen Z Y, Liang X, et al. Energy Environ. Sci., 2012,5:7893-7897

    36. [36]

      [36] Shao Y Y, Park S, Xiao J, et al. ACS Catal., 2012,2(5):844-857

    37. [37]

      [37] Lu Y C, Gasteiger H A, Parent M C, et al. Electrochem. Solid-State Lett., 2010,13(6):A69-A72

    38. [38]

      [38] Cao R G, Lee J S, Liu M L, et al. Adv. Energy Mater., 2012,2(7):816-829

    39. [39]

      [39] Cheng H, Scott K. Appl. Catal. B, 2011,108:140-151

    40. [40]

      [40] Lu Y C, Gasteiger H A, Shao-Horn Y. J. Am. Chem. Soc., 2011,133(47):19048-19051

    41. [41]

      [41] Lu Y C, Kwabi D G, Yao K P C, et al. Energy Environ. Sci., 2011,4(8):2999-3007

    42. [42]

      [42] Lu Y C, Gasteiger H A, Crumlin E, et al. J. Electrochem. Soc., 2010,157(9):A1016-A1025

    43. [43]

      [43] Thapa A K, Saimen K, Ishihara T. Electrochem. Solid-State Lett., 2010,13(11):A165-A167

    44. [44]

      [44] Thapa A K, Ishihara T. J. Power Sources, 2011,196(16): 7016-7020

    45. [45]

      [45] Zhang L L, Zhang X B, Wang Z L, et al. Chem. Commun., 2012,48(61):7598-7600

    46. [46]

      [46] Cao Y, Wei Z K, He J, et al. Energy Environ. Sci., 2012,5: 9765-9768

    47. [47]

      [47] Qin Y, Lu J, Du P, et al. Energy Environ. Sci., 2013,6:519-531

    48. [48]

      [48] Park H W, Lee D U, Nazar L F, et al. J. Electrochem. Soc., 2013,160(2):A344-A350

    49. [49]

      [49] Zhang L L, Wang Z L, Xu D, et al. Chin. Sci. Bull., 2012, 57(32):4210-4214

    50. [50]

      [50] Débart A, Paterson A J, Bao J, et al. Angew. Chem., 2008, 120(24):4597-4600

    51. [51]

      [51] Wang H L, Yang Y, Liang Y Y, et al. Energy Environ. Sci., 2012,5:7931-7935

    52. [52]

      [52] Oh S H, Black R, Pomerantseva E, et al. Nature Chem., 2012,4(12):1004-1010

    53. [53]

      [53] Oh S H, Nazar L F. Adv. Energy Mater., 2012,2(7):903-910

    54. [54]

      [54] Wang L, Zhao X, Lu Y H, et al. J. Electrochem. Soc., 2011, 158(12):A1379-A1382

    55. [55]

      [55] Yang W, Salim J, Li S, et al. J. Mater. Chem., 2012,22: 18902-18907

    56. [56]

      [56] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Nature Chem., 2011,3(7):546-550

    57. [57]

      [57] Xu J J, Xu D, Wang Z L, et al. Angew. Chem. Int. Ed., 2013,52:3887-3890

    58. [58]

      [58] Shui J L, Karan N K, Balasubramanian M, et al. J. Am. Chem. Soc., 2012,134(40): 16654-16661

    59. [59]

      [59] Li Y L, Wang J J, Li X F, et al. Electrochem. Commun., 2012,18:12-15

    60. [60]

      [60] Lu Y, Wen Z Y, Jin J, et al. J. Solid State Electrochem., 2012,16:1863-1868

    61. [61]

      [61] Sun Y Q, Chun L, Shi G Q. J. Mater. Chem., 2012,22:12810-12816

    62. [62]

      [62] Dong S M, Chen X, Zhang K J, et al. Chem. Commun., 2011, 47(40):11291-11293

    63. [63]

      [63] Lee J H, Black R, Popov G, et al. Energy Environ. Sci., 2012,5:9558-9565

    64. [64]

      [64] Black R, Lee J H, Adams B, et al. Angew. Chem., 2013,125 (1):410-414

    65. [65]

      [65] McCloskey B D, Scheffler R, Speidel A, et al. J. Am. Chem. Soc., 2011,133(45):18038-1804

    66. [66]

      [66] FU Cheng-Hua(付承华), FEI Xin-Kun(费新坤). Marine Electric & Electronic Technology(Chuandian Jishu), 2011, 31:23-27

    67. [67]

      [67] GAO Yong(高勇), WANG Cheng(王诚), PU Wei-Hua(蒲薇 华), et al. Battery Bimonthly(Dianchi), 2011,41:161-164

    68. [68]

      [68] Black R, Adams B, Nazar L. Adv. Energy Mater., 2012,2(7): 801-815

    69. [69]

      [69] Christensen J, Albertus P, Sanchez-Carrera R S, et al. J. Electrochem. Soc., 2011,159(2):R1-R30 [70] Xu D, Wang Z L, Xu J J, et al. Chem. Commun., 2012,48 (55):6948-6950

    70. [70]

      [71] Freunberger S A, Chen Y H, Peng Z Q, et al. J. Am. Chem. Soc., 2011,133(20):8040-8047

    71. [71]

      [72] Wang H, Xie K. Electrochim. Acta, 2012,64:29-34

    72. [72]

      [73] McCloskey B D, Speidel A, Scheffler R, et al. J. Phys. Chem. Lett., 2012,3(8):997-1001

    73. [73]

      [74] Freunberger S A, Chen Y H, Drewett N E, et al. Angew. Chem. Int. Ed., 2011,50(37):8609-8613

    74. [74]

      [75] Lim H D, Park K Y, Gwon H, et al. Chem. Commun., 2012, 48:8374-8376

    75. [75]

      [76] McCloskey B D, Bethune D S, Shelby R M, et al. J. Phys. Chem. Lett., 2011,2(10):1161-1166

    76. [76]

      [77] Read J. J. Electrochem. Soc., 2006,153(1):A96-A100

    77. [77]

      [78] Trahan M J, Mukerjee S, Plichta E J, et al. J. Electrochem. Soc., 2013,160(2):A259-A267

    78. [78]

      [79] Peng Z Q, Freunberger S A, Chen Y H, et al. Science, 2012,337(6094):563-566

    79. [79]

      [80] Xu D, Wang Z L, Xu J J, et al. Chem. Commun., 2012,48 (95):11674

    80. [80]

      [81] Chen Y H, Freunberger S A, Peng Z Q, et al. J. Am. Chem. Soc., 2012,134(18):7952-7957

    81. [81]

      [82] Walker W, Giordani V, Uddin J, et al. J. Am. Chem. Soc., 2013,135(6):2076-2079

    82. [82]

      [83] Garsuch B A, Badine D M, Leitner K, et al. Z. Phy. Chem., 2012,226(2):107-119

    83. [83]

      [84] Goodenough J B, Kim Y. Chem. Mater., 2009,22(3):587-603

    84. [84]

      [85] Allen C J, Hwang J, Kautz R, et al. J. Phys. Chem. C, 2012, 116(39):20755-20764

    85. [85]

      [86] Yang X H, Xia Y Y. J. Solid State Electrochem., 2010,14 (1):109-114

    86. [86]

      [87] Zhang L L, Wang Z L, Xu D, et al. Int. J. Smart Nano Mater., 2012,4:27-46

    87. [87]

      [88] Hardwick L J, Bruce P G. Curr. Opin. Solid State Mater. Sci., 2012,16(4):178-185

    88. [88]

      [89] Zhang D, Fu Z H, Wei Z, et al. J. Electrochem. Soc., 2010, 157(3):A362-A365

    89. [89]

      [90] Padbury R, Zhang X. J. Power Sources, 2011,196(10):4436-4444

    90. [90]

      [91] Kraytsberg A, Ein-Eli Y. J. Power Sources, 2011,196(3): 886-893

    91. [91]

      [92] Andrei P, Zheng J, Hendrickson M, et al. J. Electrochem. Soc., 2010,157(12):A1287-A1295

    92. [92]

      [93] ZHANG Ming(张明), XU Qiang(徐强), SANG Chun(桑椿), et al. Chin. J. Power Sources(Dianyuan Jishu), 2012,36:898-901

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(0)
  • Abstract views(399)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return