Citation: XU Yan, XING Li-Shu, LI Xiang-Ping, SHI Lei, LI Xue-Bing, LIN Sen, LI Ming-Shi. Direct Synthesis of Al-SBA-15 at High Aging Temperature without Mineral Acid[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1849-1855. doi: 10.3969/j.issn.1001-4861.2013.00.248 shu

Direct Synthesis of Al-SBA-15 at High Aging Temperature without Mineral Acid

  • Received Date: 8 October 2012
    Available Online: 26 March 2013

    Fund Project: 国家自然科学基金(20976076) (20976076)中科院百人项目(Y11202220T) (Y11202220T)山东省高等学校科技计划项目(J12LA02)资助项目。 (J12LA02)

  • Al-SBA-15 with a rod-like morphology and well-ordered mesostructure was hydrothermally synthesized through a one-step approach in an environmentally friendly medium by using triblock copolymer Pluronic P123 as a structure-directing agent. The influence of aging temperature and silica-alumina species co-hydrolysis on the morphologies and structural properties of the resultant materials were investigated by XRD, IR, SEM, TEM and nitrogen adsorption-desorption techniques at 77 K. Compared to silica-alumina co-hydrolysis, the aging temperature plays an important role in the formation of the ordered mesostructure. The mesopores are widened and the wall thickness becomes thinner when the aging temperature is increased. The particles have well-defined rod-like morphology with the uniform particle size from 2 to 4 μm and the diameter in the range of 400~600 nm. The Si/Al molar ratio of the final Al-SBA-15 samples will be obviously higher if the time for silica-alumina co-hydrolysis is longer than 20 h.
  • 加载中
    1. [1]

      [1] Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992,352:710-712

    2. [2]

      [2] Corma A. Chem. Rev., 1997,97:2373-2419

    3. [3]

      [3] Zhao D, Feng J, Huo Q, et al. Science, 1998,279:548-552

    4. [4]

      [4] Vinu A, Murugesan V, Bhlmann W, et al. J. Phys. Chem. B, 2004,108:11496-11505

    5. [5]

      [5] Wu S, Han Y, Zou Y C, et al. Chem. Mater., 2004,16:486-492

    6. [6]

      [6] Yue Y, Gédéon A, Bonardet J L. Chem. Commun., 1999, 1967-1968

    7. [7]

      [7] Zhang Z, Han Y, Zhu L. Angew. Chem. Int. Ed., 2001,40: 1258-1262

    8. [8]

      [8] Luan Z, Maes E M, Heide P A W, et al. Chem. Mater., 1999,11:3680-3686

    9. [9]

      [9] SUN Jin-Yu(孙锦玉), Zhao Dong-Yuan(赵东元). Chem. J. Chin. Univ.(Gaodeng Xuexiao Huaxue Xuebao), 2000,21(1): 21-23

    10. [10]

      [10] YU Hui(于辉), ZHAI Qing-Zhou(翟庆洲). Bulletin Chin. Ceramic Soc. (Guisuanyan Tongbao), 2006,25(6):123-128

    11. [11]

      [11] Pitchumani R, Li W, Coppens M O. Catal. Today, 2005,105: 618-622

    12. [12]

      [12] Vinu A, Murugesan V, Hartmann M, et al. J. Phys. Chem. B, 2004,108:11496-11505

    13. [13]

      [13] Han Y, Li D, Zhao L, et al. Angew. Chem. Int. Ed., 2003, 42:3633-3637

    14. [14]

      [14] Li D, Han Y, Xiao F S, et al. Chem. Eur. J., 2004,10:5911-5922

    15. [15]

      [15] Chen S Y, Jang L Y, Cheng S. Chem. Mater., 2004,16: 4174-4180

    16. [16]

      [16] Chen S Y, Tsai H D, Chuang W T. J. Phys. Chem. C, 2009, 113:15226-15238

    17. [17]

      [17] Wu Z, Wang H, Zhuang T. Adv. Funct. Mater., 2008,18:82-94

    18. [18]

      [18] Lin N, Yang J, Wu Z. Microporous Mesoporous Mater., 2011, 139:130-137

    19. [19]

      [19] Lin S, Shi L, Ribeiro Carrott M M L. Microporous Mesoporous Mater., 2011,142:526-534

    20. [20]

      [20] Bennadja Y, Beaunier P, Margolese D. Microporous Mesoporous Mater., 2001,44:147-152

    21. [21]

      [21] Feuston B P, Higgins J B. J. Phys. Chem., 1994,98:4459-4462

    22. [22]

      [22] Ryoo R, Ko C H, Kruk M. J. Phys. Chem. B, 2000,104: 11465-11471

    23. [23]

      [23] YU Shan-Qing(于善青),ZHAO Rui-Yu(赵瑞玉),LIU Chen-Guang(刘晨光). Acta Petrolei Sinica(Petroleum Processing) (Shiyou Xuebao (Shiyou Jiagong)), 2004,20(4):79-83

    24. [24]

      [24] ZHOU Li-Hui(周丽绘), ZHANG Li-Zhong(张利中), LIU Hong-Lai(刘洪来). Chinese J.Process Engineering (Guocheng Gongcheng Xuebao), 2006,6(3):499-502

    25. [25]

      [25] Mokaya R, Jones W. Chem. Commun., 1997,22:2185-2186

  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(0)
  • Abstract views(460)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return