Citation: ZHENG Ming-Tao, XIAO Yong, ZHANG Hao-Ran, DONG Han-Wu, GONG Xue-Bin, XU Ru-Chun, LEI Bing-Fu, LIU Ying-Liang, LIU Xiao-Tang. Hydrothermal Synthesis and Characterization of Sulfur-Doped Carbon Microspheres[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(7): 1391-1399. doi: 10.3969/j.issn.1001-4861.2013.00.244 shu

Hydrothermal Synthesis and Characterization of Sulfur-Doped Carbon Microspheres

  • Received Date: 22 February 2013
    Available Online: 16 March 2013

    Fund Project: 国家自然科学基金(No.21201065,21031001,U0734005) (No.21201065,21031001,U0734005)广东省自然科学基金(No.s2012040007836) (No.s2012040007836)广东省高校科技创新计划(No.cxzd1014) (No.cxzd1014)

  • Sulfur-doped carbon microspheres (SCMSs) with mean size of about 4 μm were prepared successfully by a simple one-step sulfur-assisted hydrothermal carbonization (ASHTC) method. Soluble starch was used as carbon precursor and sublime sulfur as sulfur source. The as-prepared SCMSs were characterized systematically by means of SEM, TEM, XRD, N2 absorption-desorption isotherms, FTIR, XPS, and solid NMR. The existing forms of sulfur in SCMSs were also discussed. It was found that monodispersed SCMSs with high output could be obtained under high starch concentration (1.0 g·mL-1) and sulfur atoms could be introduced into carbon networks easily, indicating that the ASHTC is a powerful method for SCMS synthesis. For comparison, carbon microspheres (CMSs) were synthesized by conventional hydrothermal carbonization of starch in the absence of sulfur under the same hydrothermal conditions. Experimental results show that the as-synthesized SCMSs exhibit much higher specific surface area than that of CMSs. The reason of the increase of surface area of SCMSs may be due to the structural and chemical defects resulted from the sulfur doping. The chemical defects come from the-S-S-,-S-,-SO2-and-SO-groups, while the structural defects result from the substitution of graphite hexatomic-rings by thiophene five-membered rings in SCMSs.
  • 加载中
    1. [1]

      [1] CHENG Li-Qiang(程立强), LIU Ying-Liang(刘应亮), ZHANG Jing-Xian(张静娴), et al. Prog. Chem.(Huaxue Jinzhan), 2006,18(10):1298-1304

    2. [2]

      [2] Xu C W, Cheng L Q, Shen P K, et al. Electrochem. Commun., 2007,9:997-1001

    3. [3]

      [3] WANG Xiu-Li(王秀丽), LIN Hong-Yan(林宏艳), LU Hai-Yan(卢海燕), et al. Chin. J. Appl. Chem.(Yingyong Huaxue), 2006,23(11):1223-1227

    4. [4]

      [4] PING Li-Na(平丽娜), ZHENG Jia-Ming(郑嘉明), SHI Zhi-Qiang(时志强), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2012,28(7):1733-1738

    5. [5]

      [5] Pan L L, Bi J Q, Bai Y J, et al. J. Phys. Chem. C, 2008,112: 12134-12137

    6. [6]

      [6] Deshmukh A A, Mhlanga S D, Coville N J. Mater. Sci. Eng. R, 2010,70:1-28

    7. [7]

      [7] WU Yong-Jian(武拥建), ZHENG Ming-Tao(郑明涛), XIE Chun-Lin(谢春林), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(12):2447-2452

    8. [8]

      [8] CHEN Feng(陈丰), CHEN Zhi-Gang(陈志刚), LI Xia-Zhang (李霞章), et al. J. Chin. Ceram. Soc.(Guisuanyan Xuebao), 2011,39(3):397-402

    9. [9]

      [9] CI Ying(慈颖), GE Jun(葛军), Wang Xiao-Feng(王小峰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007, 23(2):365-368

    10. [10]

      [10] Cui J, Hu C, Yang, et al. J. Mater. Chem., 2012,22:8121-8126

    11. [11]

      [11] Serp P, Feurer R, Kalck P, et al. Carbon, 2001,39:621-626

    12. [12]

      [12] Zhao S, Wang C Y, Chen M M, et al. Mater. Lett., 2008,62: 3322-3324

    13. [13]

      [13] Wang Z L, Kang Z C. J. Phys. Chem., 1996,100:17725-17731

    14. [14]

      [14] Lou Z S, Chen Q W, Gao J, et al. Carbon, 2004,42:229-232

    15. [15]

      [15] Wang Q, Li H, Chen L Q, et al. Carbon, 2001,39:2211-2214

    16. [16]

      [16] YIN Cai-Liu(尹彩流), HUANG Qi-Zhong(黄启忠), WANG Xiu-Fei(王秀飞), et al. Carbon Techn.(Tansu Jishu), 2009, 28(3):19-22

    17. [17]

      [17] Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004,43:3827-3831

    18. [18]

      [18] Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004,43:597-601

    19. [19]

      [19] Cui X J, Antonietti M, Yu S H. Small, 2006,2:756-759

    20. [20]

      [20] Sevilla M, Fuertes A B. Carbon, 2009,47:228-229

    21. [21]

      [21] Sevilla M, Fuertes A B. Chem. Eur. J., 2009,15:4195-4203

    22. [22]

      [22] Baccile N, Laurent G, Babonneau F, et al. J. Phys. Chem. C, 2009,113:9644-9654

    23. [23]

      [23] Mi Y Z, Hu W B, Dan Y M, et al. Mater. Lett., 2008,62: 1194-1196

    24. [24]

      [24] Zheng M, Liu Y, Xiao Y, et al. J. Phys. Chem. C, 2009,113: 8455-8459

    25. [25]

      [25] Zheng M, Liu Y, Jiang K, et al. Carbon, 2010,48:1224-1233

    26. [26]

      [26] Tuinatra F, Koenig J L. J. Chem. Phys., 1970,53:1126-1130

    27. [27]

      [27] Ferrari A C, Robertson J. Phys. Rev. B, 2000,61:14095-14107

    28. [28]

      [28] Ferrari A C. Solid State Commun., 2007,143:47-57

    29. [29]

      [29] Compagnini G, Puglisi O, Foti G. Carbon, 1997,35:1793-1797

    30. [30]

      [30] Tan P, Dimovski S, Gogotsi Y. Phys. Eng. Sci., 2004,362: 2289-2310

    31. [31]

      [31] Chadli H, Rahmani A, Sbai K, et al. Phys. A, 2005,358: 226-236

    32. [32]

      [32] Lu X, Sun C, Li F, et al. Chem. Phys. Lett., 2008,454:305-309

    33. [33]

      [33] Tapasztó L, Kertész K, Vértesy Z, et al. Carbon, 2005,43: 970-977

    34. [34]

      [34] Yue Z R, Jiang W, Wang L, et al. Carbon, 1999,37:1785-1796

    35. [35]

      [35] Puziy A M, Poddubnaya O I, Socha R P, et al. Carbon, 2008,46:2113-2123

    36. [36]

      [36] Cai W, Piner R D, Stadermann F J, et al. Science, 2008, 321:1815-1817

    37. [37]

      [37] Hayashia S, Hoshib F, Ishikurab T, et al. Carbon, 2003,41: 3047-3056

    38. [38]

      [38] Rafalskii R P, Medvedeva L S, Prisyagina N I, et al. Geokhimiya, 1983,5:665-676

    39. [39]

      [39] Bondarenko G V, Gorbaty Y E. Geochimica et Cosmochimica Acta, 1997,61:1413-1420

    40. [40]

      [40] Tsuchiya N, Suto Y, Kabuta T, et al. J. Mater. Sci., 2008, 43:2115-2122

    41. [41]

      [41] Gorbaty Y E, Gupta R B. Ind. Eng. Chem. Res., 1998,37: 3026-3035

    42. [42]

      [42] Gorbaty Y E, Kalinichev A G. J. Phys. Chem., 1995,99: 5336-5340

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(0)
  • Abstract views(460)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return