Citation: ZHONG Yong-Hui, ZHOU Qi, LIU Jia-Qin, WANG Yan, CHEN Xing, WU Yu-Cheng. Preparation of Fluorizated TiO2 Hollow Microspheres and Their Photocatalytic Activity[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2133-2139. doi: 10.3969/j.issn.1001-4861.2013.00.238 shu

Preparation of Fluorizated TiO2 Hollow Microspheres and Their Photocatalytic Activity

  • Received Date: 27 February 2013
    Available Online: 9 April 2013

    Fund Project: 国家自然科学基金(No.51202052,No.91023030) (No.51202052,No.91023030)安徽省国际科技合作计划(No.10080703017)资助项目 (No.10080703017)

  • Using tetrabutyl orthotitanate as Ti source, hydrofluoric acid as Fsource and ethanol as solvent, well crystallized anatase-phase F-modified TiO2 hollow microspheres have been synthesized via a solvothermal process. The structure and properties of the resulting samples were characterized by XRD, SEM, FTIR, XPS. The results indicated that the fluorizated TiO2 hollow microspheres had an anatase phase, the fluorine atoms were mainly distributed on the surface of TiO2, and existed in forms of chemical-adsorption. Hollow anatase TiO2 microspheres were achieved by Ostwald ripening under solvothermal conditions. Compared to pure titania, the fluorizated TiO2 hollow microspheres showed a much higher degradation efficiency, and degradation rate of which can be up to 98% during the photodegradation of methyl orange with the initial concentration of 20 mg·L-1 for 30 minutes. The mechanism for the great improvement for photocatalytic activity can be attributed to the unique structure of hollow microsphere and the fluorine modification, because the strong electron withdrawing ability of the surface ≡Ti-Fgroups reduces the recombination of photogenerated electrons and holes, and enhances the formation of free OHradicals.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238(5358):37-38 [2] Pelaez M, Nolan N T, Pillai S C, et al. Appl. Catal. B, 2012, 125:331-349 [3] WU Yu-Cheng(吴玉程), WANG Yan(王岩), CUI Jie-Wu (崔接武), et al. Chin. J. Nonferrous Metals. (Zhongguo Youse Jinshu Xuebao), 2011,121(10):2430-2447 [4] Dipaola A, Garcia L E, Marci G, et al. J. Hazard. Mater., 2012,211:3-29 [5] Kubacka A, Fernández G M, Colón G. Chem. Rev., 2011,112 (3):1555-1614 [6] WU Da-Wang (吴大旺), LI Shuo(李硕), ZHANG Qiu-Lin (张秋林), et al. Acta Phys -Chim. Sin. (Wuli Huaxue Xuebao), 2012,28(7):1383-1388 [7] HUANG Dong-Sheng (黄东升), CHEN Chao-Feng (陈朝凤), LI Yu-Hua(李玉花), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2007,23(4):738-742 [8] YANG Juan(杨娟), LI Jian-Tong(李建通), MIAO-Juan(缪娟). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,27(3): 547-555 [9] XIAO Yi-Fan(肖逸帆), LIU Song(柳松), XIANG De-Cheng (向德成), et al. Bull. Chin. Ceram. Soc. (Guisuanyan Xuebao), 2011,30(2):348-355 [10]Tada H, Kiyonaga T, Naya S. Chem.Soc. Rev., 2009,38: 1849-1858 [11]LIU Shao-You(刘少友), FENG Qing-Ge(冯庆革), TANG Wen-Hua(唐文华), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(4):273-281 [12]Lü K, Cheng B, Yu J G, et al. Phys. Chem. Chem. Phys., 2012,14(16):5349-5410 [13]Pan J H, Cai Z Y, Yu Y, et al. J. Mater. Chem., 2011,21 (30):11430-11438 [14]HUANG Dong-Gen(黄冬根), LIAO Shi-Jun(廖世军), ZHOU Wen-Bin(周文斌), et al. J. Funct. Mater. (Goneneng Cailiao), 2008,39(7):1166-1173 [15]LI Zhu-Ying(李竹英), WEI Shun-Wen(韦顺文), CHAI Li- Yuan(柴立元), et al. J. Cent. South Univ. (Zhongnan Daxue Xuebao), 2009,40(1):56-59 [16]GAO Yue-Jun (高岳君), XU Yi-Ming(许宜铭). Acta Phys. -Chim.Sin.(Wuli Huaxue Xuebao), 2012,28(3):641-646 [17]CAI Chen-Ling(蔡陈灵), WANG Jin-Guo(王金果), CAO Feng-Lei(曹锋雷), et al. Chin. J. Catal. (Cuihua Xuebao), 2011,32(5):862-871 [18]JIANG Jing-Jing (蒋晶晶), LONG Ming-Ce(龙明策), WU De-Yong(吴德勇), et al. -Acta. Phys. Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(5):1149-1156 [19]Yu J G, Wang W G, Cheng B, et al. J. Phys. Chem. C, 2009,113(16):6743-6750 [20]Minero C, Mariella G, Maurino V, et al. Langmuir, 2000,16 (17):8964-8972 [21]Li J Q, Wang D F, He Z L, et al. J. Am. Ceram. Soc., 2011, 94(5):1639-1642 [22]Yang H G, Sun C G, Qiao S G, et al. Nature, 2008,453 (7195):638-642 [23]Pan L, Zou J J, Wang S B, et al. ACS Appl. Mater. Inter., 2012,4(3):1650-1655 [24]Li H X, Bian Z F, Zhu J, et al. J. Am. Chem. Soc., 2007, 129(27):8406-8407 [25]Yang H G, Zeng H C. J. Phys. Chem. B, 2004,108(11): 3492-3495 [26]Yu J G, Liu S W, Yu H G, et al. J. Catal., 2007,249(1):59-66 [27]HUANG Dong-Gen (黄冬根), LIAO Shi-Jun (廖世军), DANG Zhi(党志). Acta Chim. Sin.(Huaxue Xuebao), 2006,64(17): 1805-1811 [28]CHEN Yan-Min(陈艳敏), ZHONG Jing(钟晶), CHEN Feng (陈锋), et al. Chin. J. Catal(Cuihua Xuebao), 2010,31(1): 120-125 [29]Liu M, Lü K L, Wang G H, et al. Chem. Eng. Technol., 2010,33(9):1531-1536 [30]Mrowetz M, Selli E. Phys. Chem. Chem. Phys., 2005,7(6): 1100-1102 [31]Minero C, Mariella G, Maurino V, et al. Langmuir, 2000,16 (6):2632-2641 [32]Kondo Y, Yoshikawa H, Awaga K, et al. Langmuir, 2007,24 (2):547-550

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    17. [17]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    20. [20]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(0)
  • Abstract views(482)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return