Citation: LI Jun-Hua, KUANG Dai-Zhi, FENG Yong-Lan, LIU Meng-Qin, TANG Si-Ping, DENG Pei-Hong. Preparation of TNP Electrochemical Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(6): 1157-1164. doi: 10.3969/j.issn.1001-4861.2013.00.220 shu

Preparation of TNP Electrochemical Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite

  • Received Date: 21 November 2012
    Available Online: 11 March 2013

    Fund Project: 国家自然科学基金(No.21105024,201102040) (No.21105024,201102040)湖南省教育厅科学研究基金(No.12C0536,10K010) (No.12C0536,10K010)湖南省自然科学基金(13JJ3112) (13JJ3112)功能金属有机材料湖南省高校重点实验室开放基金(No.11K02) (No.11K02)

  • Graphene oxide (GO) was prepared by a modified Hummers process, and then silver nanoparticles (AgNPs) were directly deposited on the surface of GO using glucose as reducing agent; finally nanocomposite of AgNPs/GO with good stability was obtained. A novel 2,4,6-trinitrophenol (TNP) electrochemical sensor was fabricated based on the prepared nanocomposite modified electrode. The nanocomposite was characterized by atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), UV-Vis spectroscopy (UV-Vis) and alternating current impedance (EIS), and the electrochemical behaviors and kinetic properties of TNP on the modified electrode were also investigated. The experimental results showed that a sensitive oxidation peak and three reduction peaks of TNP appeared at the nanocomposite modified electrode. The oxidation peak can be used for quantitative analysis of TNP. Moreover, the whole electrode process was obviously irreversible, and electrode reaction was controlled by the adsorption step. The surface coverage of nanocomposite modified electrode was 5.617×10-8 mol·cm-2, and the rate constant was 9.745×10-5 cm·s-1 at the fixed potential. In pH 6.8 phosphate buffer, the oxidation peak currents of TNP were linearly dependent on its concentrations in the range of 5.0×10-9~1.0×10-7 mol·L-1 with accumulation time of 60 s at -0.70 V. The correlation coefficient was 0.995 8 and the detection limit was 1.0×10-9 mol·L-1. The prepared electrochemical sensor had preferable stability and selectivity, and it could be applied to the quick determination of TNP in real water samples, and the recovery was from 97.6% to 103.9%.
  • 加载中
    1. [1]

      [1] Aysem U, Erol E, Resat A. Anal. Chim. Acta, 2004,505(1): 83-93

    2. [2]

      [2] Yang R H, Wang K M, Xiao D, et al. Analyst, 2000,125: 877-882

    3. [3]

      [3] WANG Ruo-Yan(王若燕), ZHOU Xiao-Ping(周晓萍), DU Sai(杜赛), et al. Chinese J. Health Lab. Technol.(Zhongguo Weisheng Jianyan Zazhi), 2010,20(6):1362-1363

    4. [4]

      [4] FU Zhou-Zhou(付周周), REN Xiao-Na(任小娜), ZHOU Xiu- Ying(周秀英), et al. Phys. Test. Chem. Anal.(Lihua Jianyan), 2009,45(3): 270-275

    5. [5]

      [5] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306(5296):666-669

    6. [6]

      [6] Chen C M, Zhang Q, Yang M G, et al. Carbon, 2012,50(10): 3572-3584

    7. [7]

      [7] JIN Li(金莉), SUN Dong(孙东), ZHANG Jian-Rong(张剑荣). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6): 1084-1090

    8. [8]

      [8] Shi Y, Wu J, Sun Y, et al. Biosens. Bioelectron., 2012,38(1): 31-36

    9. [9]

      [9] GAO Yuan(高原), LI Yan(李艳), SU Xing-Guang(苏星光). Chinese J. Anal. Chem.(Fenxi Huaxue), 2013,41(2):174-180

    10. [10]

      [10] Li J H, Kuang D Z, Feng Y L, et al. J. Hazard. Mater., 2012,201-202:250-259

    11. [11]

      [11] LU Xian-Chun(卢先春), HUANG Ke-Jing(黄克靖), WU Zhi -Wei(吴志伟), et al. Chinese J. Anal. Chem.(Fenxi Huaxue), 2012,40(3):452-456

    12. [12]

      [12] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong- Juan(孙红娟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5):915-921

    13. [13]

      [13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80: 1339

    14. [14]

      [14] WANG Yue-Hui(王悦辉), ZHANG Qi(张琦), WANG Ting (王婷), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(3):365-373

    15. [15]

      [15] Cao L, Sun H, Li J, et al. Anal. Methods, 2011,3:1587-1594

    16. [16]

      [16] Bard A J, Faulkner L R. Electrochemical Methods, Funda- mentals and Applications. New York: Wiley, 2001:230-231

    17. [17]

      [17] Anson F. Anal. Chem., 1966,38(1):54-57

    18. [18]

      [18] ZHAO Peng(赵鹏), FANG Hui-Jue(方慧珏), XUE Teng(薛 腾), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2005,21(11):1235-1239.

    19. [19]

      [19] LI Jun-Hua(李俊华), KUANG Dai-Zhi(邝代治), FENG Yong-Lan(冯泳兰), et al. Chinese J. Anal. Chem.(Fenxi Huaxue), 2011,39(12):1864-1870

    20. [20]

      [20] Laviron E. J. Electroanal. Chem., 1979,100:263-270

    21. [21]

      [21] Laviron E. J. Electroanal. Chem., 1979,101:19-28

    22. [22]

      [22] Christie J H, Lauer G, Osteryoung R A, et al. Anal. Chem., 1963,35(12):1979

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(419)
  • Abstract views(589)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return