Citation:
LI Jun-Hua, KUANG Dai-Zhi, FENG Yong-Lan, LIU Meng-Qin, TANG Si-Ping, DENG Pei-Hong. Preparation of TNP Electrochemical Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(6): 1157-1164.
doi:
10.3969/j.issn.1001-4861.2013.00.220
-
Graphene oxide (GO) was prepared by a modified Hummers process, and then silver nanoparticles (AgNPs) were directly deposited on the surface of GO using glucose as reducing agent; finally nanocomposite of AgNPs/GO with good stability was obtained. A novel 2,4,6-trinitrophenol (TNP) electrochemical sensor was fabricated based on the prepared nanocomposite modified electrode. The nanocomposite was characterized by atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), UV-Vis spectroscopy (UV-Vis) and alternating current impedance (EIS), and the electrochemical behaviors and kinetic properties of TNP on the modified electrode were also investigated. The experimental results showed that a sensitive oxidation peak and three reduction peaks of TNP appeared at the nanocomposite modified electrode. The oxidation peak can be used for quantitative analysis of TNP. Moreover, the whole electrode process was obviously irreversible, and electrode reaction was controlled by the adsorption step. The surface coverage of nanocomposite modified electrode was 5.617×10-8 mol·cm-2, and the rate constant was 9.745×10-5 cm·s-1 at the fixed potential. In pH 6.8 phosphate buffer, the oxidation peak currents of TNP were linearly dependent on its concentrations in the range of 5.0×10-9~1.0×10-7 mol·L-1 with accumulation time of 60 s at -0.70 V. The correlation coefficient was 0.995 8 and the detection limit was 1.0×10-9 mol·L-1. The prepared electrochemical sensor had preferable stability and selectivity, and it could be applied to the quick determination of TNP in real water samples, and the recovery was from 97.6% to 103.9%.
-
-
-
[1]
[1] Aysem U, Erol E, Resat A. Anal. Chim. Acta, 2004,505(1): 83-93
-
[2]
[2] Yang R H, Wang K M, Xiao D, et al. Analyst, 2000,125: 877-882
-
[3]
[3] WANG Ruo-Yan(王若燕), ZHOU Xiao-Ping(周晓萍), DU Sai(杜赛), et al. Chinese J. Health Lab. Technol.(Zhongguo Weisheng Jianyan Zazhi), 2010,20(6):1362-1363
-
[4]
[4] FU Zhou-Zhou(付周周), REN Xiao-Na(任小娜), ZHOU Xiu- Ying(周秀英), et al. Phys. Test. Chem. Anal.(Lihua Jianyan), 2009,45(3): 270-275
-
[5]
[5] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306(5296):666-669
-
[6]
[6] Chen C M, Zhang Q, Yang M G, et al. Carbon, 2012,50(10): 3572-3584
-
[7]
[7] JIN Li(金莉), SUN Dong(孙东), ZHANG Jian-Rong(张剑荣). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6): 1084-1090
-
[8]
[8] Shi Y, Wu J, Sun Y, et al. Biosens. Bioelectron., 2012,38(1): 31-36
-
[9]
[9] GAO Yuan(高原), LI Yan(李艳), SU Xing-Guang(苏星光). Chinese J. Anal. Chem.(Fenxi Huaxue), 2013,41(2):174-180
-
[10]
[10] Li J H, Kuang D Z, Feng Y L, et al. J. Hazard. Mater., 2012,201-202:250-259
-
[11]
[11] LU Xian-Chun(卢先春), HUANG Ke-Jing(黄克靖), WU Zhi -Wei(吴志伟), et al. Chinese J. Anal. Chem.(Fenxi Huaxue), 2012,40(3):452-456
-
[12]
[12] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong- Juan(孙红娟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5):915-921
-
[13]
[13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80: 1339
-
[14]
[14] WANG Yue-Hui(王悦辉), ZHANG Qi(张琦), WANG Ting (王婷), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(3):365-373
-
[15]
[15] Cao L, Sun H, Li J, et al. Anal. Methods, 2011,3:1587-1594
-
[16]
[16] Bard A J, Faulkner L R. Electrochemical Methods, Funda- mentals and Applications. New York: Wiley, 2001:230-231
-
[17]
[17] Anson F. Anal. Chem., 1966,38(1):54-57
-
[18]
[18] ZHAO Peng(赵鹏), FANG Hui-Jue(方慧珏), XUE Teng(薛 腾), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2005,21(11):1235-1239.
-
[19]
[19] LI Jun-Hua(李俊华), KUANG Dai-Zhi(邝代治), FENG Yong-Lan(冯泳兰), et al. Chinese J. Anal. Chem.(Fenxi Huaxue), 2011,39(12):1864-1870
-
[20]
[20] Laviron E. J. Electroanal. Chem., 1979,100:263-270
-
[21]
[21] Laviron E. J. Electroanal. Chem., 1979,101:19-28
-
[22]
[22] Christie J H, Lauer G, Osteryoung R A, et al. Anal. Chem., 1963,35(12):1979
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[3]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[6]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[7]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[12]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[13]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[14]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[15]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[16]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[17]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[18]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[19]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[20]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(419)
- Abstract views(589)
- HTML views(95)