Citation:
XU Li, CHEN Yu, WU Jia-Huan, WEN Ban-Kang. DNA Interaction and Antitumor Activities of Ruthenium(Ⅱ) Polypyridyl Complex[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(3): 613-620.
doi:
10.3969/j.issn.1001-4861.2013.00.107
-
The interactions of the Ru(Ⅱ) complex, [Ru(phen)2(Hecip)]2+ (phen=1,10-phenanthroline, Hecip=N-ethyl-4-([1,10]-phenanthroline[5,6-f]imidazol-2-yl)carbazole), with calf thymus DNA (CT DNA) were studied by using absorption spectroscopy, binding stoichiometry, viscosity measurement and photoactivated cleavage. A tight 2:1 complex is formed by the Ru(Ⅱ) polypyridyl complex and CT DNA with a binding constant exceeding 105 mol-1·L and with a binding mode of intercalation. Furthermore, the complex exhibits efficient DNA cleavage activity on UV (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. On the other hand, the cytotoxic activity of the complex was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. The complex shows prominent anticancer activity against selected tumor cell lines with IC50 values lower than those of cisplatin. Further flow cytometry experiments show that the cytotoxic Ru(Ⅱ) complex can cause cell cycle arrest in the S phase.
-
-
-
[1]
[1] Greguric I, Aldrich-Wright J R, Collins J G. J. Am. Chem. Soc., 1997,119:3621-3622
-
[2]
[2] Nair R B, Teng E S, Kirkland S L, et al. Inorg. Chem., 1998, 37:139-141
-
[3]
[3] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999,99: 2777-2796
-
[4]
[4] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 2004,126:8630-8631
-
[5]
[5] Zeglis B M, Barton J K. J. Am. Chem. Soc., 2006,128:5654-5655
-
[6]
[6] Liu Y, Hammitt R, Lutterman D A, et al. Inorg. Chem., 2007, 46:6011-6021
-
[7]
[7] Cosgrave L, Devocelle M, Forster R J, et al. Chem. Commun., 2010,46:103-105
-
[8]
[8] Tan C P, Wu S H, Lai S S, et al. Dalton Trans., 2011,40: 8611-8621
-
[9]
[9] Tan L F, Shen J L, Liu J, et al. Dalton Trans., 2012,41:4575-4587
-
[10]
[10] Liu Y J, Li Z Z, Liang Z H, et al. DNA Cell Biol., 2011,30: 839-848
-
[11]
[11] Tan C P, Lai S S, Wu S H, et al. J. Med. Chem., 2010,53: 7613-7624
-
[12]
[12] Schatzschneider U, Niesel J, Ott I, et al. ChemMedChem, 2008,3:1104-1109
-
[13]
[13] Van Dijken A, Bastiaansen J J A M, Kiggen N M M, et al. J. Am. Chem. Soc., 2004,126:7718-7727
-
[14]
[14] Grabowski Z R, Rotkiewicz K. Chem. Rev., 2003,103:3899-4032
-
[15]
[15] Zhang Y, Wang L, Wada T, et al. Macromol. Chem. Phys., 1996,197:1877-1888
-
[16]
[16] Wagner J, Pielichowski J, Hinsch A, et al. Synth. Met., 2004,146:159-165
-
[17]
[17] Xin H, Sun M, Wang K Z, et al. Chem. Phys. Lett., 2004, 388:55-57
-
[18]
[18] Liu F R, Wang K Z, Bai G Y, et al. Inorg. Chem., 2004,43: 1799-1806
-
[19]
[19] Lü Y Y, Gao L H, Han M J, et al. Eur. J. Inorg. Chem., 2006,430:430-436
-
[20]
[20] Xu L, Liu P X, Liao G L, et al. Aust. J. Chem., 2010,63:1-9
-
[21]
[21] Marmur J A. J. Mol. Biol., 1961,3:208-218
-
[22]
[22] Reichmann M E, Rice S A, Thomas C A, et al. J. Am. Chem. Soc., 1954,76:3047-3053
-
[23]
[23] Wolf A, Shimer Jr G H, Meehan T. Biochemistry, 1987,26: 6392-6396
-
[24]
[24] Chaires J B, Dattagupta N, Crothers D M. Biochemistry, 1982,21:3933-3940
-
[25]
[25] Cohen G, Eisenberg H. Biopolymers, 1969,8:45-55
-
[26]
[26] Job P. Ann. Chim., 1928,9:113-203
-
[27]
[27] Mosmann T. J. Immunol. Methods., 1983,65:55-63
-
[28]
[28] Tan L F, Song F C, Zou X Q, et al. DNA Cell Biol., 2011, 30:277-285
-
[29]
[29] Pyle A M, Rehmann J P, Meshoyrer R, et al. J. Am. Chem. Soc., 1989,111:3051-3058
-
[30]
[30] Han M J, Duan Z M, Wang K Z, et al. J. Phys. Chem. C., 2007,111:16577-16585
-
[31]
[31] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 1990,112:4960-4962
-
[32]
[32] Tselepi-Kalouli E, Katsaros N. J. Inorg. Biochem., 1989,37: 271-282
-
[33]
[33] Liu J G, Zhang Q L, Shi X F, et al. Inorg. Chem., 2001,40: 5045-5050
-
[34]
[34] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1992,31:9319-9324
-
[35]
[35] Satyanaryana S, Daborusak J C, Chaires J B. Biochem., 1993,32:2573-2584
-
[36]
[36] Cheng C C, Rokita S E, Burrows C J. Angew. Chem. Int. Ed. Engl., 1993,32:277-278
-
[37]
[37] Lesko S A, Lorentzen R J, Ts'o P O. Biochemistry, 1980,19: 3023-3028
-
[38]
[38] Nilsson R, Merkel P B, Kearns D R. Photochem. Photobiol., 1972,16:117-124
-
[39]
[39] Patra A K, Nethaji M, Chakravarty A R. J. Inorg. Biochem., 2007,101:233-244
-
[40]
[40] Deshpande M S, Kumbhar A A, Kumbhar A S, et al. Bioconjugate Chem., 2009,20:447-459
-
[41]
[41] Gao F, Chao H, Ji L N. Chem. Biodivers., 2008,5:1962-1979
-
[42]
[42] Yu H J, Chen Y, Yu L, et al. Eur. J. Med. Chem., 2012,55: 146-154
-
[43]
[43] Karna P, Sharp S M, Yates C, et al. Mol. Cancer., 2009,8: 93
-
[1]
-
-
-
[1]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[2]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[3]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[4]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[5]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[6]
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
-
[7]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[8]
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
-
[9]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[10]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[11]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[12]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[13]
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
-
[14]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[15]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[16]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[17]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[18]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[19]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[20]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(373)
- HTML views(82)