Citation: LIU Yi-Ming, XIA Zhi-Yue, OUANG Jian-Ming, JIA Li-Ping, ZHANG Guang-Na, DING Yi-Ming. Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 903-909. doi: 10.3969/j.issn.1001-4861.2013.00.093 shu

Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls

  • Corresponding author: OUANG Jian-Ming, 
  • Received Date: 7 August 2012
    Available Online: 8 November 2012

    Fund Project: 国家自然科学基金(NO.81170649) (NO.81170649)湖南省自然科学基金(No.S2012J5042) (No.S2012J5042)湖南省教育厅科研项目(No.12C0702)资助项目。 (No.12C0702)

  • The differences in growth kinetics of urinary crystallites from 5 patients with renal stones and 5 healthy subjects were compared by using scanning electron microscopy (SEM) and X-ray diffractometer (XRD). With the increase of crystal growth time (t), the size of urinary crystallites from patients with renal stones increased constantly from (6±4) μm at t=1 h to (29±17) μm at t=48 h, but the density of crystallites decreased gradually from (1 400±300) mm-2 at t=1 h to (450±140) mm-2 at t=48 h. It indicated that the formation process of crystallites in lithogenic urine was dominated by growth control. In contrast, for healthy subjects, the density of urinary crystallites dereased from (850±260) mm-2 at t=1 h to (610±210) mm-2 at t=48 h, and the crystal size was increased only from 6±5 μm at t=1 h to (15±9) μm at t=48 h. It indicated that the growth process of crystallites in healthy urine was growth control and nucleation-control simultaneously. The differences mentioned above are mainly attributed to that both the concentration and activity of the inhibitors in healthy urine were higher than those in lithogenic urine, and thus can inhibit the growth and aggregation of urinary crystallites more effectively.
  • 加载中
    1. [1]

      [1] Yu S L, Gan X G, Huang J M, et al. J. Urol., 2011,186(3): 1114-1120

    2. [2]

      [2] Yao X Q, Ouyang J M, Peng H, et al. Carbohydr. Polym., 2012,90(7):392-398

    3. [3]

      [3] Chaiyarit S, Thongboonkerd V. J. Proteome Res., 2012,11(6): 3269-3280

    4. [4]

      [4] Zhang S, Su Z X, Yao X Q, et al. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32:840-847

    5. [5]

      [5] LI Jun-Jun(李君君), HOU Shan-Hua(侯善华), XIA Zhi-Yue (夏志月), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):245-250

    6. [6]

      [6] Daudon M, Hennequin C, Boujelben G, et al. Kidney Int., 2005,67:1934-1943

    7. [7]

      [7] Peng H, Ouyang J M, Yao X Q, et al. Int. J. Nanomed., 2012,7(8):4727-4737

    8. [8]

      [8] Daudon M, Jungers P. Nephron. Physiol., 2004,98:31-36

    9. [9]

      [9] Robertson W G, Peacock M, Marshall R W, et al. New England J. Med., 1976,294(5):249-252

    10. [10]

      [10] Poon N W, Gohel M D I. Carbohydr. Res., 2012,347:64-68

    11. [11]

      [11] Lauren A, Thurgood·Phulwinder K., Ryall R L. Urol Res., 2008,36:103-110

    12. [12]

      [12] BAI Yu(白钰), OYYANG Jian-Ming(欧阳健明), BAI Yan (白燕), et al. Spectrosc. Spectr. Anal.(Guangpuxue Yu Guangpu Fenxi), 2004,24(8):1016-1019

    13. [13]

      [13] CHEN Jun-Hao, GU Guang-Yu, WANG Yi-Li. J. Clin. Lab. Sci.(Linchuang Jianyan Zazhi), 1999,5(17):266-267

    14. [14]

      [14] Poon N, Gohel M D I. Carbohydr. Res., 2012,347(1):64-68

    15. [15]

      [15] Daudon M, Cohen-Solal F, Barbey F, et al. Urol. Res., 2003,31:207-211

    16. [16]

      [16] Abdel-Halim R E. J. Urol. Nephrol., 1993,27:145-149

    17. [17]

      [17] Tiselius H G, Hallin A, Lindback B. Urol. Res., 2001,29(2): 75-82

    18. [18]

      [18] Mullin J W. Crystallization. London: Butterworth Heinemann, 2000:102-288

    19. [19]

      [19] Wang G, Liu T, Xie X L, et al. Mater. Chem. Phys., 2011,3 (128):336-340

    20. [20]

      [20] Schwille P O, Schmiedl A, Fan J, et al. Urol. Res., 1999,27: 117-126

    21. [21]

      [21] Lee T, Lin Y C. Cryst. Growth Des., 2011,11(7):2973-2992

    22. [22]

      [22] Chien Y C, Masica D L, Gray J J, et al. J. Biol. Chem., 2009,284(35):23491-23501

    23. [23]

      [23] Langdon A, Wignall G R, Rogers K, et al. Calcd. Tiss. Int., 2009,84(3):240-248

    24. [24]

      [24] Jung T S, Sheng X X, Choi C K, et al. Langmuir, 2004,20: 8587-8596

    25. [25]

      [25] Michelacci Y M, Glashan R Q, Schor N. Kidney Int., 1989, 36:1022-1028

    26. [26]

      [26] Wesson J A, Ganne V, Beshensky A M, et al. Urol. Res., 2005,33(3):206-212

    27. [27]

      [27] Mustafi D, Nakagawa Y, Makinen M W. Cell Mol. Biol., 2000,46(8):1345-1360

    28. [28]

      [28] Buchholz N P, Kim D S, Grover P K. J. Bone Miner. Res., 1999,14(6):1003-1012

    29. [29]

      [29] Mechlin C, KalorinC, Asplin J, et al. J. Endourol., 2011,25 (9):1541-1545

    30. [30]

      [30] Lieske J C, Leonard R, Toback F G. Am. J. Physiol., 1995,4 (268):604-612

    31. [31]

      [31] Mandel N. J. Am. Soc. Nephrol., 1994,5(5):S37-45

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    13. [13]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    19. [19]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    20. [20]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

Metrics
  • PDF Downloads(403)
  • Abstract views(754)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return