Citation: YANG Ying, CUI Jia-Rui, YI Peng-Fei, XIAO Si, GUO Xue-Yi. Effect of NiO Nanoparticles on Magnetic Quasi-Solid Dye-Sensitized Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1007-1012. doi: 10.3969/j.issn.1001-4861.2013.00.076 shu

Effect of NiO Nanoparticles on Magnetic Quasi-Solid Dye-Sensitized Solar Cells

  • Corresponding author: GUO Xue-Yi, 
  • Received Date: 14 September 2012
    Available Online: 30 October 2012

    Fund Project:

  • A magnetic polymer electrolyte using agarose as polymer matrix, NMP as solvent and NiO nanoparticles as modifier was investigated and employed in the dye-sensitized solar cell (DSSC) in this paper. The influence of NiO nanoparticles content on magnetic polymer electrolyte was characterized by SEM and ionic conductivity test. The photovoltaic properties of the corresponding DSSCs with different concentrations of NiO nanoparticles were studied by photovoltaic performance tests and electrochemical impedance spectra (EIS). The results showed that the optimal concentration of NiO nanoparticles was 1.0wt%, in which concentration the surface morphology of the polymer electrolyte was smooth and this magnetic polymer electrolyte showed the maximum conductivity (2.43×10-3 S·cm-1). The photoelectric efficiency and electron lifetime of DSSCs increased initially and then decreased with the increasing of the NiO nanoparticles content, the optimal photoelectric efficiency as well as the longest electron lifetime were achieved at the NiO nanoparticles content of 1.0wt%. At this optimal content, the photoelectric efficiency of DSSC was 1.63%, the voltage, current density and the filling factor of the DSSC was 0.57 V, 5.8 mA·cm-2 and 0.53, respectively.
  • 加载中
    1. [1]

      [1] ORegan B, Grtzel M. Nature 1991,353:737-740

    2. [2]

      [2] Nazeeruddin M K, Kay A, Rodicio I, et al. Chem. Soc., 1993,115(14):6382-6390

    3. [3]

      [3] YANG Shu-Ming(杨术明). Dye-sensitized Nanocrystalline Solar Cells(染料敏化纳米晶太阳能电池). Zhengzhou: Zhengzhou University Press, 2007.

    4. [4]

      [4] Yella A, Lee H W, Tsao H N, et al. Science, 2011,334 (6056):629-634

    5. [5]

      [5] WANG Wei-Jia(王惟嘉), YANG Ying(杨英), GUO Xue-Yi (郭学益), et al. Chemistry (Huaxue Tongbao), 2011,74(2): 144-149

    6. [6]

      [6] Kumara R A G, Kancko S, Okuya M, et al. Langmuir, 2002,18(26):10493-10495

    7. [7]

      [7] Meng Q B, Takahashi K, Zhang X T, et al. Langmuir, 2003, 19(9):3572-3574

    8. [8]

      [8] Bach U, Lupo D, Comte P, et al. Nature, 1998,395:583-585

    9. [9]

      [9] Nogueria A F, Durrant J R, Depaoli M A, et al. Adv. Mater., 2001,13(11):826-830

    10. [10]

      [10] Wang P, Zakeeruddin S M, Grtzel M. J. Fluorine Chem., 2004,125(8):1241-1245

    11. [11]

      [11] Wang H X, Li H, Xue B F, et al. J. Am. Chem. Soc., 2005, 127(17):6394-6401

    12. [12]

      [12] Xue B F, Wang H X, Hu Y S, et al. Photochem. Photobiol. Sci., 2004,3(10):918-919

    13. [13]

      [13] Yang M R, Teng T H, Wu S H. J. Power Sources, 2006,159 (1):307-311

    14. [14]

      [14] Yang Y , Zhou C H , Xu S, et al. Nanotechnology, 2009,20 (10):105204(9pp)

    15. [15]

      [15] SHI Yan-Tao(史彦涛), SUN Xiao-Dan(孙晓丹), WENG Duan(翁端), et al. World SCI-Tech R&D(Shijie Keji Yanjiu Yu Fazhan), 2006,28(3):45-50

    16. [16]

      [16] QIU Wei-Li(邱玮丽), YANG Qing-He(杨清河), MA Xiao- Hua(马晓华), et al. Chin. J. Power Sources(Dianyuan Jishu), 2004,28(7):440-448

    17. [17]

      [17] DU Hong-Yan(杜洪彦), CHENG Hu(程琥), YANG Yong (杨勇). Electrochemistry (Dianhuaxue), 2004,10(2):215-221

    18. [18]

      [18] Han H W, Liu W, Zhang J, et al. Adv. Funct. Mater., 2005, 15(12):1940-1944

    19. [19]

      [19] Khan S A, Baker G L, Colson S. Chem. Mater., 1994,6(12): 2359-2363

    20. [20]

      [20] Croce F, Appetecchi G B, Persi L, et al. Nature, 1998,394 (28818):456-458

    21. [21]

      [21] Wang Y P, Zhu J W, Yang X J, et al. Thermochmica Acta, 2005,437(1):106-109

    22. [22]

      [22] Golodnitsky D, Livshits E, Kovarsky R, et al. Electrochem. Solid-State Lett., 2004,7(11):412-415

    23. [23]

      [23] Livshits E, Kovarsky R, Lavie N, et al. Electrochim. Acta, 2005,50(19):3805-3814

    24. [24]

      [24] Ash B J, Schadler L S, Siegel R W. Mater. Lett., 2002,55 (1):83-87

    25. [25]

      [25] Choi B K, Kim Y W, Shin K H. J. Power Sources, 1997,68 (2):357-360

    26. [26]

      [26] Fuke N, Fukui A, Komiya R, et al. Chem. Mater., 2008,20 (15):4974-4979

    27. [27]

      [27] Wang M, Lin Y, Zhou X W, et al. Mater. Chem. Phys., 2008,107(1):61-66

    28. [28]

      [28] Wang W J, Guo X Y, Yang Y. Electrochim. Acta, 2011,56 (21):7347-7351

    29. [29]

      [29] Kern R, Sastrawan R, Ferber J, et al. Electrochim. Acta, 2002,47(26):4213-4225

    30. [30]

      [30] LIANG Lin-Yun(梁林云), DAI Song-Yuan(戴松元), HU Lin-Hua(胡林华), et al. Acta Phys. Sin.(Wuli Xuebao), 2009,58(2):1338-1343

    31. [31]

      [31] Nakade S, Saito Y, Kubo W, et al. J. Phys. Chem. B, 2003, 107(33):8607-8611

    32. [32]

      [32] FU Ping-Feng(傅平丰), ZHANG Peng-Yi(张彭义). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25(11):2026-2030

    33. [33]

      [33] WANG Zhong-Chang(王中长), LIU Tian-Mou(刘天模), LI Jia-Ming(李家鸣). J. Chongqing Univ. (Chongqing Daxue Xuebao), 2003,26(11):52-55

    34. [34]

      [34] He J J, Benk G, Korodi F, et al. J. Am. Chem. Soc., 2002, 124(17):4922-4932

    35. [35]

      [35] Zhang Z P, Zakeeruddin S M, O'Regan B, et al. J. Phys. Chem. B 2005,109(46):21818-21824

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    10. [10]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    13. [13]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    19. [19]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(559)
  • Abstract views(834)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return