Citation: Zhuoyan Lv,  Yangming Ding,  Leilei Kang,  Lin Li,  Xiao Yan Liu,  Aiqin Wang,  Tao Zhang. Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100038. doi: 10.3866/PKU.WHXB202408015 shu

Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst

  • Corresponding author: Leilei Kang,  Xiao Yan Liu, 
  • Received Date: 27 August 2024
    Revised Date: 25 September 2024
    Accepted Date: 2 October 2024

    Fund Project: This work was financially supported by the NSFC Center for Single-Atom Catalysis (22388102), the Fundamental Research Funds for the Central Universities (20720220009), the DNL Cooperation Fund, CAS (DNL202002), LiaoNing Revitalization Talents Program (XLYC2007070), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0540000).

  • Direct epoxidation of propylene (DEP) by molecular oxygen is an ideal way to synthesize propylene oxide (PO), yet it remains quite challenging. We demonstrated here that the PO formation rate and selectivity could be enhanced simultaneously through photo-thermo-catalysis over the Cu/TiO2 catalyst. At 180 ℃, by introducing light, the PO formation rate increased more than 20-fold (from 8.2 to 180.6 μmol∙g−1∙h−1) and the corresponding selectivity improved more than 3-fold (from 8% to 27%), breaking the traditional perception that the semiconductors exhibit very low reactivity for this reaction. Kinetic study results showed that the apparent activation energy for PO formation could sharply decrease under light irradiation (from 95 to 40 kJ∙mol−1). In situ electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were applied to characterize the dynamics of the valence state of the copper oxide species and the activation intermediates of molecular oxygen. Evidence for the activation of oxygen, which could direct to the PO formation pathway, was captured. The light-driven electrons could promote the formation of active Cu+, which could form the side-on μ-peroxo Cu(II)2 structure, weaken the O―O bond, and improve the PO formation rate and selectivity. This work paves a new way for designing semiconductor-supported photocatalysts for DEP reactions with molecular oxygen.
  • 加载中
    1. [1]

      (1) Khatib, S. J.; Oyama, S. T. Catal. Rev. Sci. Eng. 2015, 57, 306. doi: 10.1080/01614940.2015.1041849

    2. [2]

      (2) Teržan, J.; Huš, M.; Likozar, B.; Djinović, P. ACS Catal. 2020, 10, 13415. doi: 10.1021/acscatal.0c03340

    3. [3]

      (3) Pu, T.; Setiawan, A.; Mosevitzky Lis, B.; Zhu, M.; Ford, M. E.; Rangarajan, S.; Wachs, I. E. ACS Catal. 2022,12, 4375. doi: 10.1021/acscatal.1c05939

    4. [4]

      (4) Guo, M.; Dongfang, N.; Iannuzzi, M.; van Bokhoven, J. A.; Artiglia, L. ACS Catal. 2024, 14, 10234. doi: 10.1021/acscatal.4c01566

    5. [5]

      (5) Thommes, T.; Reitzmann, A.; Kraushaar-Czarnetzki, B. Appl Catal A: Gen 2007, 318, 160. doi: 10.1016/j.apcata.2006.10.051

    6. [6]

      (6) Gambo, Y.; Adamu, S.; Abdulrasheed, A. A.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, M. M. Appl Catal A: Gen 2021, 609, 117914. doi: 016/j.apcata.2020.117914

    7. [7]

      (7) Haruta M.; Huang J. Res. Chem. Intermediat. 2012, 38, 1. doi: 10.1007/s11164-011-0424-6

    8. [8]

      (8) Zohour, B.; Noon, D.; Seubsai, A.; Senkan, S. Ind. Eng. Chem. Res. 2014, 53, 6243. doi: 10.1021/ie402416s

    9. [9]

      (9) Su, W. G.; Wang, S. G.; Ying, P. L.; Feng, Z. C.; Li, C. J. Catal. 2009, 268, 165. doi: 10.1016/j.jcat.2009.09.017

    10. [10]

      (10) Zhu, W. M.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2008, 112, 7731. doi: 10.1021/jp800927y

    11. [11]

      (11) Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y. Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X.; et al. J. Am. Chem. Soc. 2020, 142, 14134. doi: 10.1021/jacs.0c03882

    12. [12]

      (12) Qadir, M. I.; Dupont, J. Angew. Chem. Int. Ed. 2023, 62. doi: 10.1002/anie.202301497

    13. [13]

      (13) Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443

    14. [14]

      (14) Fang, S.; Hu, Y. H. Chem. Soc. Rev. 2022, 51, 3609. doi: 10.1039/d1cs00782c

    15. [15]

      (15) Pichat, P.; Herrmann, J.; Disdier, J.; Mozzanega, M. J. Phys. Chem. 1979, 83, 3122. doi: 10.1021/J100487A012

    16. [16]

      (16) Tanaka, T.; Yoshida, H.; Nakagawa, H.; Funabiki, T.; Yoshida, S. Catal. Today 1993, 16, 297. doi: 10.1016/0920-5861(93)80069-D

    17. [17]

      (17) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Langmuir 2004, 20, 4236. doi:10.1021/la0496439

    18. [18]

      (18) Murata, C.; Yoshida, H.; Kumagai, J.; Hattori, T. J. Phys. Chem. B 2003, 107, 4364. doi:10.1021/jp0277006

    19. [19]

      (19) Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T. J. Catal. 2003, 220, 226. doi: 10.1016/s0021-9517(03)00292-6

    20. [20]

      (20) Yoshida, H.; Tanaka, T.; Yamamoto, M.; Yoshida, T.; Funabiki, T.; Yoshida, S. J. Catal.1997, 171, 351. doi:10.1006/jcat.1997.1813

    21. [21]

      (21) Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590. doi: 10.1126/science.1231631

    22. [22]

      (22) Lv, Z.; Kang, L.; Pan, X.; Su, Y.; Wang, H.; Li, L.; Liu, X. Y.; Wang, A.; Zhang, T. ACS Catal. 2024, 14, 10172. doi: 10.1021/acscatal.4c01749

    23. [23]

      (23) Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Angew. Chem. Int. Ed. 2020, 59, 12909. doi: 10.1002/anie.202001701

    24. [24]

      (24) Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2023, 40, 2303003. doi: 10.3866/PKU.WHXB202303003

    25. [25]

      (25) Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y.; et al. J. Am. Chem. Soc. 2021,143, 14530. doi: 10.1021/jacs.1c03788

    26. [26]

      (26) Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C.-Y.; Lee, J.-F. J.Catal. 2011, 278, 288. doi: 10.1016/j.jcat.2010.12.016

    27. [27]

      (27) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Ed. 2007, 46, 2055. doi: 10.1002/anie.200603803

    28. [28]

      (28) Huang, Y.; Liu, Z.; Gao, G.; Xiao, G.; Du, A.; Bottle, S.; Sarina, S.; Zhu, H. ACS Catal. 2017, 7, 4975. doi: 10.1021/acscatal.7b01180

    29. [29]

      (29) Li, D.; Zhao, Y.; Miao, Y.; Zhou, C.; Zhang, L.-P.; Wu, L.-Z.; Zhang, T. Adv. Mater.2022, 34, 2207793. doi: 10.1002/adma.202207793

    30. [30]

      (30) Hikov, T.; Schroeter, M. K.; Khodeir, L.; Chemseddine, A.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2006, 8, 1550. doi: 10.1039/b512113b

    31. [31]

      (31) Liu, Y.; Zhang, B.; Luo, L.; Chen, X.; Wang, Z.; Wu, E.; Su, D.; Huang, W. Angew. Chem. Int. Ed. 2015, 54, 15260. doi: 10.1002/anie.201509115

    32. [32]

      (32) Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2021, 144, 740. doi: 10.1021/jacs.1c09141

    33. [33]

      (33) Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y.; et al. Nat. Commun. 2022,13, doi: 10.1038/s41467-021-27698-3

    34. [34]

      (34) Bello, I.; Chang, W. H.; Lau, W. M. J. Appl. Phys. 1994, 75, 3092. doi: 10.1063/1.356160

    35. [35]

      (35) Li, W.; Wu, G.; Hu, W.; Dang, J.; Wang, C.; Weng, X.; da Silva, I.; Manuel, P.; Yang, S.; Guan, N.; et al. J. Am. Chem. Soc. 2022,144, 4260. doi: 10.1021/jacs.2c00792

    36. [36]

      (36) He, J. L.; Zhai, Q. G.; Zhang, Q. H.; Deng, W. P.; Wang, Y. J. Catal. 2013, 299, 53. doi: 10.1016/j.jcat.2012.11.032

    37. [37]

      (37) Wang, Y. N.; Ma, W. H.; Wang, D. Y.; Zhong, Q. Chem. Eng. J. 2017, 307, 1047. doi: 10.1016/j.cej.2016.09.035

    38. [38]

      (38) Xiong, W.; Gu, X.-K.; Zhang, Z.; Chai, P.; Zang, Y.; Yu, Z.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. Nat. Commun. 2021, 12, 5921. doi: 10.1038/s41467-021-26257-0

    39. [39]

      (39) Wang, A.; Zhang, L.; Yu, Z.; Zhang, S.; Li, L.; Ren, Y.; Yang, J.; Liu, X.; Liu, W.; Yang, X.; et al. J. Am. Chem. Soc. 2023, 146, 695. doi: 10.1021/jacs.3c10551

    40. [40]

      (40) Huang, M.; Zhang, S.; Wu, B.; Wei, Y.; Yu, X.; Gan, Y.; Lin, T.; Yu, F.; Sun, F.; Jiang, Z.; et al. ACS Catal. 2022, 12, 9515. doi: 10.1021/acscatal.2c02424

    41. [41]

      (41) Rana, S.; Pandey, B.; Dey, A.; Haque, R.; Rajaraman, G.; Maiti, D. ChemCatChem 2016,8, 3367. doi: 10.1002/cctc.201600843

    42. [42]

      (42) Ren, L.; Dai, W.; Yang, X.; Cao, Y.; Xie, Z.; Fan, K. Chin. J. Catal. 2006,27, 115. doi: 10.1016/s1872-2067(06)60009-0

    43. [43]

      (43) Solomon, E.; Ginsbach, J.; Heppner, D.; Kieber, M.; Kjaergaard, C.; Smeets, P.; Tian, L.; Woertink, J. Faraday Discuss. 2011, 148, 11. doi: 10.1039/c005500j

    44. [44]

      (44) Chen, P.; Root, D.; Cecelia, C.; Kiyoshi, F.; Solomon, E. J. Am. Chem. Soc. 2002,125, 466. doi: 10.1021/ja020969i

    45. [45]

      (45) Woertinka, J.; Smeetsa, P.; Groothaertb, M.; Vancea, M.; Selsb, B.; Schoonheydtb, R.; Solomona, E. Proc. Natl. Acad. Sci. U. S. A. 2009,106, 18908. doi: 10.1073/pnas.0910461106

    46. [46]

      (46) Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018, 30, 1705197. doi: 10.1002/adma.201705197

    47. [47]

      (47) Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4, 60. doi: 10.1038/s41560-018-0292-z

    48. [48]

      (48) Denisov, I., Makris, T.; Sligar, S.; Kincaid, J. J. Phys. Chem. A 2008, 112, 13172. doi: 10.1021/jp8017875

    49. [49]

      (49) Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Lamberti, C.; Zecchina, A. Angew. Chem. Int. Ed. 2002, 114, 4928. doi: 10.1002/ange.200290031

    50. [50]

      (50) Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A.-N.; Coperet, C. Nature 2020, 586, 708. doi: 10.1038/s41586-020-2826-3

    51. [51]

      (51) Song, Y. Y.; Wang, G. C. J. Phys. Chem. C 2018, 122, 21500. doi: 10.1021/acs.jpcc.8b07044

    52. [52]

      (52) Fernandez, E.; Boronat, M.; Corma, A. J. Phys. Chem. C 2020, 124, 21549. doi: 10.1021/acs.jpcc.0c0629

    53. [53]

      (53) Sun, B.; Wang, G.-C. J. Phys. Chem. C 2024, 128, 13829. doi: 10.1021/acs.jpcc.4c03206

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

Metrics
  • PDF Downloads(5)
  • Abstract views(474)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return