Citation:
Zhuoyan Lv, Yangming Ding, Leilei Kang, Lin Li, Xiao Yan Liu, Aiqin Wang, Tao Zhang. Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst[J]. Acta Physico-Chimica Sinica,
;2025, 41(4): 100038.
doi:
10.3866/PKU.WHXB202408015
-
Direct epoxidation of propylene (DEP) by molecular oxygen is an ideal way to synthesize propylene oxide (PO), yet it remains quite challenging. We demonstrated here that the PO formation rate and selectivity could be enhanced simultaneously through photo-thermo-catalysis over the Cu/TiO2 catalyst. At 180 ℃, by introducing light, the PO formation rate increased more than 20-fold (from 8.2 to 180.6 μmol∙g−1∙h−1) and the corresponding selectivity improved more than 3-fold (from 8% to 27%), breaking the traditional perception that the semiconductors exhibit very low reactivity for this reaction. Kinetic study results showed that the apparent activation energy for PO formation could sharply decrease under light irradiation (from 95 to 40 kJ∙mol−1). In situ electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were applied to characterize the dynamics of the valence state of the copper oxide species and the activation intermediates of molecular oxygen. Evidence for the activation of oxygen, which could direct to the PO formation pathway, was captured. The light-driven electrons could promote the formation of active Cu+, which could form the side-on μ-peroxo Cu(II)2 structure, weaken the O―O bond, and improve the PO formation rate and selectivity. This work paves a new way for designing semiconductor-supported photocatalysts for DEP reactions with molecular oxygen.
-
-
-
[1]
(1) Khatib, S. J.; Oyama, S. T. Catal. Rev. Sci. Eng. 2015, 57, 306. doi: 10.1080/01614940.2015.1041849
-
[2]
(2) Teržan, J.; Huš, M.; Likozar, B.; Djinović, P. ACS Catal. 2020, 10, 13415. doi: 10.1021/acscatal.0c03340
-
[3]
(3) Pu, T.; Setiawan, A.; Mosevitzky Lis, B.; Zhu, M.; Ford, M. E.; Rangarajan, S.; Wachs, I. E. ACS Catal. 2022,12, 4375. doi: 10.1021/acscatal.1c05939
-
[4]
(4) Guo, M.; Dongfang, N.; Iannuzzi, M.; van Bokhoven, J. A.; Artiglia, L. ACS Catal. 2024, 14, 10234. doi: 10.1021/acscatal.4c01566
-
[5]
(5) Thommes, T.; Reitzmann, A.; Kraushaar-Czarnetzki, B. Appl Catal A: Gen 2007, 318, 160. doi: 10.1016/j.apcata.2006.10.051
-
[6]
(6) Gambo, Y.; Adamu, S.; Abdulrasheed, A. A.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, M. M. Appl Catal A: Gen 2021, 609, 117914. doi: 016/j.apcata.2020.117914
-
[7]
(7) Haruta M.; Huang J. Res. Chem. Intermediat. 2012, 38, 1. doi: 10.1007/s11164-011-0424-6
-
[8]
(8) Zohour, B.; Noon, D.; Seubsai, A.; Senkan, S. Ind. Eng. Chem. Res. 2014, 53, 6243. doi: 10.1021/ie402416s
-
[9]
(9) Su, W. G.; Wang, S. G.; Ying, P. L.; Feng, Z. C.; Li, C. J. Catal. 2009, 268, 165. doi: 10.1016/j.jcat.2009.09.017
-
[10]
(10) Zhu, W. M.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2008, 112, 7731. doi: 10.1021/jp800927y
-
[11]
(11) Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y. Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X.; et al. J. Am. Chem. Soc. 2020, 142, 14134. doi: 10.1021/jacs.0c03882
-
[12]
(12) Qadir, M. I.; Dupont, J. Angew. Chem. Int. Ed. 2023, 62. doi: 10.1002/anie.202301497
-
[13]
(13) Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443
-
[14]
(14) Fang, S.; Hu, Y. H. Chem. Soc. Rev. 2022, 51, 3609. doi: 10.1039/d1cs00782c
-
[15]
(15) Pichat, P.; Herrmann, J.; Disdier, J.; Mozzanega, M. J. Phys. Chem. 1979, 83, 3122. doi: 10.1021/J100487A012
-
[16]
(16) Tanaka, T.; Yoshida, H.; Nakagawa, H.; Funabiki, T.; Yoshida, S. Catal. Today 1993, 16, 297. doi: 10.1016/0920-5861(93)80069-D
-
[17]
(17) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Langmuir 2004, 20, 4236. doi:10.1021/la0496439
-
[18]
(18) Murata, C.; Yoshida, H.; Kumagai, J.; Hattori, T. J. Phys. Chem. B 2003, 107, 4364. doi:10.1021/jp0277006
-
[19]
(19) Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T. J. Catal. 2003, 220, 226. doi: 10.1016/s0021-9517(03)00292-6
-
[20]
(20) Yoshida, H.; Tanaka, T.; Yamamoto, M.; Yoshida, T.; Funabiki, T.; Yoshida, S. J. Catal.1997, 171, 351. doi:10.1006/jcat.1997.1813
-
[21]
(21) Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590. doi: 10.1126/science.1231631
-
[22]
(22) Lv, Z.; Kang, L.; Pan, X.; Su, Y.; Wang, H.; Li, L.; Liu, X. Y.; Wang, A.; Zhang, T. ACS Catal. 2024, 14, 10172. doi: 10.1021/acscatal.4c01749
-
[23]
(23) Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Angew. Chem. Int. Ed. 2020, 59, 12909. doi: 10.1002/anie.202001701
-
[24]
(24) Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2023, 40, 2303003. doi: 10.3866/PKU.WHXB202303003
-
[25]
(25) Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y.; et al. J. Am. Chem. Soc. 2021,143, 14530. doi: 10.1021/jacs.1c03788
-
[26]
(26) Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C.-Y.; Lee, J.-F. J.Catal. 2011, 278, 288. doi: 10.1016/j.jcat.2010.12.016
-
[27]
(27) Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Ed. 2007, 46, 2055. doi: 10.1002/anie.200603803
-
[28]
(28) Huang, Y.; Liu, Z.; Gao, G.; Xiao, G.; Du, A.; Bottle, S.; Sarina, S.; Zhu, H. ACS Catal. 2017, 7, 4975. doi: 10.1021/acscatal.7b01180
-
[29]
(29) Li, D.; Zhao, Y.; Miao, Y.; Zhou, C.; Zhang, L.-P.; Wu, L.-Z.; Zhang, T. Adv. Mater.2022, 34, 2207793. doi: 10.1002/adma.202207793
-
[30]
(30) Hikov, T.; Schroeter, M. K.; Khodeir, L.; Chemseddine, A.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2006, 8, 1550. doi: 10.1039/b512113b
-
[31]
(31) Liu, Y.; Zhang, B.; Luo, L.; Chen, X.; Wang, Z.; Wu, E.; Su, D.; Huang, W. Angew. Chem. Int. Ed. 2015, 54, 15260. doi: 10.1002/anie.201509115
-
[32]
(32) Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2021, 144, 740. doi: 10.1021/jacs.1c09141
-
[33]
(33) Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y.; et al. Nat. Commun. 2022,13, doi: 10.1038/s41467-021-27698-3
-
[34]
(34) Bello, I.; Chang, W. H.; Lau, W. M. J. Appl. Phys. 1994, 75, 3092. doi: 10.1063/1.356160
-
[35]
(35) Li, W.; Wu, G.; Hu, W.; Dang, J.; Wang, C.; Weng, X.; da Silva, I.; Manuel, P.; Yang, S.; Guan, N.; et al. J. Am. Chem. Soc. 2022,144, 4260. doi: 10.1021/jacs.2c00792
-
[36]
(36) He, J. L.; Zhai, Q. G.; Zhang, Q. H.; Deng, W. P.; Wang, Y. J. Catal. 2013, 299, 53. doi: 10.1016/j.jcat.2012.11.032
-
[37]
(37) Wang, Y. N.; Ma, W. H.; Wang, D. Y.; Zhong, Q. Chem. Eng. J. 2017, 307, 1047. doi: 10.1016/j.cej.2016.09.035
-
[38]
(38) Xiong, W.; Gu, X.-K.; Zhang, Z.; Chai, P.; Zang, Y.; Yu, Z.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. Nat. Commun. 2021, 12, 5921. doi: 10.1038/s41467-021-26257-0
-
[39]
(39) Wang, A.; Zhang, L.; Yu, Z.; Zhang, S.; Li, L.; Ren, Y.; Yang, J.; Liu, X.; Liu, W.; Yang, X.; et al. J. Am. Chem. Soc. 2023, 146, 695. doi: 10.1021/jacs.3c10551
-
[40]
(40) Huang, M.; Zhang, S.; Wu, B.; Wei, Y.; Yu, X.; Gan, Y.; Lin, T.; Yu, F.; Sun, F.; Jiang, Z.; et al. ACS Catal. 2022, 12, 9515. doi: 10.1021/acscatal.2c02424
-
[41]
(41) Rana, S.; Pandey, B.; Dey, A.; Haque, R.; Rajaraman, G.; Maiti, D. ChemCatChem 2016,8, 3367. doi: 10.1002/cctc.201600843
-
[42]
(42) Ren, L.; Dai, W.; Yang, X.; Cao, Y.; Xie, Z.; Fan, K. Chin. J. Catal. 2006,27, 115. doi: 10.1016/s1872-2067(06)60009-0
-
[43]
(43) Solomon, E.; Ginsbach, J.; Heppner, D.; Kieber, M.; Kjaergaard, C.; Smeets, P.; Tian, L.; Woertink, J. Faraday Discuss. 2011, 148, 11. doi: 10.1039/c005500j
-
[44]
(44) Chen, P.; Root, D.; Cecelia, C.; Kiyoshi, F.; Solomon, E. J. Am. Chem. Soc. 2002,125, 466. doi: 10.1021/ja020969i
-
[45]
(45) Woertinka, J.; Smeetsa, P.; Groothaertb, M.; Vancea, M.; Selsb, B.; Schoonheydtb, R.; Solomona, E. Proc. Natl. Acad. Sci. U. S. A. 2009,106, 18908. doi: 10.1073/pnas.0910461106
-
[46]
(46) Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018, 30, 1705197. doi: 10.1002/adma.201705197
-
[47]
(47) Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4, 60. doi: 10.1038/s41560-018-0292-z
-
[48]
(48) Denisov, I., Makris, T.; Sligar, S.; Kincaid, J. J. Phys. Chem. A 2008, 112, 13172. doi: 10.1021/jp8017875
-
[49]
(49) Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Lamberti, C.; Zecchina, A. Angew. Chem. Int. Ed. 2002, 114, 4928. doi: 10.1002/ange.200290031
-
[50]
(50) Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A.-N.; Coperet, C. Nature 2020, 586, 708. doi: 10.1038/s41586-020-2826-3
-
[51]
(51) Song, Y. Y.; Wang, G. C. J. Phys. Chem. C 2018, 122, 21500. doi: 10.1021/acs.jpcc.8b07044
-
[52]
(52) Fernandez, E.; Boronat, M.; Corma, A. J. Phys. Chem. C 2020, 124, 21549. doi: 10.1021/acs.jpcc.0c0629
-
[53]
(53) Sun, B.; Wang, G.-C. J. Phys. Chem. C 2024, 128, 13829. doi: 10.1021/acs.jpcc.4c03206
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[4]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[5]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[6]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[10]
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
-
[11]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[14]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[15]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[16]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[17]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[18]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[19]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[20]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(475)
- HTML views(64)