Citation: Qiqi Li, Su Zhang, Yuting Jiang, Linna Zhu, Nannan Guo, Jing Zhang, Yutong Li, Tong Wei, Zhuangjun Fan. Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240600. doi: 10.3866/PKU.WHXB202406009 shu

Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage

  • Corresponding author: Su Zhang, suzhangs@163.com Zhuangjun Fan, fanzhj666@163.com
  • Received Date: 11 June 2024
    Revised Date: 29 July 2024
    Accepted Date: 30 July 2024

    Fund Project: the National Natural Science Foundation of China 52062046the National Natural Science Foundation of China 52302336the Taishan Scholar Project of Shandong Province tsqn202306131the Taishan Scholar Project of Shandong Province tsqn202312123the Key Basic Research Projects of Natural Science Foundation of Shandong Province ZR2019ZD51

  • Activated carbons are widely used as the electrode material for supercapacitors owing to their large surface area, moderate conductivity, and outstanding electrochemical stability. However, large-surface-area activated carbons usually show low density and poor volumetric energy storage performance, which is difficult to meet the development of devices miniaturization. Mechanical compression is a simple and effective method to improve the density of the activated carbons. However, most of the studies focus on mechanical compression of the as-prepared porous carbon materials. Preparation of high-density activated carbons by mechanical compression of the carbon precursors has been proposed. But the surface area and porous structure evolution, and the possible mechanism have rarely investigated. Herein, we propose a universal method to improve the density of the activated carbons by mechanical compression of the precursors before activation. The influence of mechanical compression on the surface area, porous structure, and capacitive energy storage performance of the activated carbons prepared by two typical methods, outside-in activation (carbon powder/KOH mixture) and homogeneous ion activation (pyrolysis of potassium-containing salts), are studied. Mechanical compression of the precursors can generally improve the activation reaction efficiency, as well as the density and volumetric capacitive performance of the activated carbons. However, the surface area and porous structure evolution mainly depend on the carbon precursor and pore-forming process. For outside-in activation, the surface area and porosity of the activated carbons show a first increasing and then decreasing trend with the increase of mechanical pressure. This is because mechanical compression enhances the contact between the carbon precursors and activator through eliminating the voids between particles, significantly improves the activation efficiency. For homogeneous ion activation, the surface area and porosity of activated carbons show a trend of decreasing first and then increasing. The reason is deduced as compressed precursors inhibit the rapid release of active gas molecules (H2O, CO2 etc.) produced during pyrolysis. These gas molecules further participate in the activation etching reaction and promote the activation efficiency. The optimized sample shows high gravimetric and volumetric capacitances of 316 F·g-1/291 F·cm-3 and 131 F·g-1/92 F·cm-3 at 1 A·g-1 in aqueous and organic electrolytes, respectively. This work provides a simple way for design and preparation of activated carbons with large surface area and high density.
  • 加载中
    1. [1]

      Simon, P., Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297  doi: 10.1038/nmat2297

    2. [2]

      Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925. doi: 10.1039/c5cs00580a  doi: 10.1039/c5cs00580a

    3. [3]

      Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/c1cs15060j  doi: 10.1039/c1cs15060j

    4. [4]

      Sevilla, M.; Mokaya, R. Energy Environ. Sci. 2014, 7, 1250. doi: 10.1039/c3ee43525c  doi: 10.1039/c3ee43525c

    5. [5]

      Shao, H.; Wu, Y.; Lin, Z.; Taberna, P. L.; Simon, P. Chem. Soc. Rev. 2020, 49, 3005. doi: 10.1039/d0cs00059k  doi: 10.1039/d0cs00059k

    6. [6]

      Yang, Y.; Zhu, J.; Wang, P.; Liu, H.; Zeng, W.; Chen, L.; Chen, Z.; Mu, S. Acta Phys. -Chim. Sini. 2022, 38, 2106002.  doi: 10.3866/PKU.WHXB202106002

    7. [7]

      Ye, P.; Qin, L.; He, M.; Wu, F.; Chen, Z.; Liang, M.; Deng, L. Acta Phys. -Chim. Sini. 2024, 40, 2311032.  doi: 10.3866/PKU.WHXB202311032

    8. [8]

      Zhang, W.; Liang, H.; Zhu, K.; Tian, Y.; Liu, Y.; Chen, J.; Li, W. Acta Phys. -Chim. Sini. 2022, 38, 2105024.  doi: 10.3866/PKU.WHXB202105024

    9. [9]

      Guo, W.; Yu, C.; Li, S.; Qiu, J. Energy Environ. Sci. 2021, 14, 576. doi: 10.1039/d0ee02649b  doi: 10.1039/d0ee02649b

    10. [10]

      Wu, J.; Zhang, X.; Ju, Z.; Wang, L.; Hui, Z.; Mayilvahanan, K.; Takeuchi, K. J.; Marschilok, A. C.; West, A. C.; Takeuchi, E. S.; et al. Adv. Mater. 2021, 33, 2101275. doi: 10.1002/adma.202101275  doi: 10.1002/adma.202101275

    11. [11]

      Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. Energy Environ. Sci. 2015, 8, 1390. doi: 10.1039/c5ee00389j  doi: 10.1039/c5ee00389j

    12. [12]

      Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H.; Yang, Q. Energy Environ. Sci. 2016, 9, 3135. doi: 10.1039/c6ee00941g  doi: 10.1039/c6ee00941g

    13. [13]

      Li, Z.; Gadipelli, S.; Li, H.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z.; Parkin, I. P.; Li, F. Nat. Energy 2020, 5, 160. doi: 10.1038/s41560-020-0560-6  doi: 10.1038/s41560-020-0560-6

    14. [14]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    15. [15]

      Li, H.; Tao, Y.; Zheng, X.; Li, Z.; Liu, D.; Xu, Z.; Luo, C.; Luo, J.; Kang, F.; Yang, Q. Nanoscale 2015, 7, 18459. doi: 10.1039/c5nr06113j  doi: 10.1039/c5nr06113j

    16. [16]

      Murali, S.; Quarles, N.; Zhang, L. L.; Potts, J. R.; Tan, Z.; Lu, Y.; Zhu, Y.; Ruoff, R. S. Nano Energy 2013, 2, 764. doi: 10.1016/j.nanoen.2013.01.007  doi: 10.1016/j.nanoen.2013.01.007

    17. [17]

      Li, P.; Li, H.; Han, D.; Shang, T.; Deng, Y.; Tao, Y.; Lv, W.; Yang, Q. H. Adv. Sci. 2019, 6, 1802355. doi: 10.1002/advs.201802355  doi: 10.1002/advs.201802355

    18. [18]

      Zhang, S.; Zhu, J.; Qing, Y.; Wang, L.; Zhao, J.; Li, J.; Tian, W.; Jia, D.; Fan, Z. Adv. Funct. Mater. 2018, 28, 1805898. doi: 10.1002/adfm.201805898  doi: 10.1002/adfm.201805898

    19. [19]

      Jiang, Y.; Jiang, Z.; Shi, M.; Liu, Z.; Liang, S.; Feng, J.; Sheng, R.; Zhang, S.; Wei, T.; Fan, Z. Carbon 2021, 182, 559. doi: 10.1016/j.carbon.2021.06.039  doi: 10.1016/j.carbon.2021.06.039

    20. [20]

      Tian, W.; Zhu, J.; Dong, Y.; Zhao, J.; Li, J.; Guo, N.; Lin, H.; Zhang, S.; Jia, D. Carbon 2020, 161, 89. doi: 10.1016/j.carbon.2020.01.044  doi: 10.1016/j.carbon.2020.01.044

    21. [21]

      Guo, H.; Ding, B.; Dong, X.; Dong, S.; Zhang, Y.; Zhu, J.; Dou, H.; Zhang, X. Energy Technol. -Ger. 2019, 7, 1900209. doi: 10.1002/ente.201900209  doi: 10.1002/ente.201900209

    22. [22]

      Adeniran, B.; Mokaya, R. Nano Energy 2015, 16, 173. doi: 10.1016/j.nanoen.2015.06.022  doi: 10.1016/j.nanoen.2015.06.022

    23. [23]

      Balahmar, N.; Mitchell, A. C.; Mokaya, R. Adv. Energy Mater. 2015, 5, 1500867. doi: 10.1002/aenm.201500867  doi: 10.1002/aenm.201500867

    24. [24]

      Wu, X.; Ding, B.; Zhang, C.; Li, B.; Fan, Z. Carbon 2019, 153, 225. doi: 10.1016/j.carbon.2019.07.020  doi: 10.1016/j.carbon.2019.07.020

    25. [25]

      Sevilla, M.; Fuertes, A. B. ACS Nano 2014, 8, 5069. doi: 10.1021/nn501124h  doi: 10.1021/nn501124h

    26. [26]

      Li, J.; Kossmann, J.; Zeng, K.; Zhang, K.; Wang, B.; Weinberger, C.; Antonietti, M.; Odziomek, M.; López-Salas, N. Angew. Chem. Int. Ed. 2023, 62, e202217808. doi: 10.1002/anie.202217808  doi: 10.1002/anie.202217808

    27. [27]

      Liu, Q.; Wu, D.; Wang, T.; Wang, C.; Jia, D. Adv. Funct. Mater. 2024, 34, 2400556. doi: 10.1002/adfm.202400556  doi: 10.1002/adfm.202400556

    28. [28]

      Peng, Q.; Wang, K.; Gong, Y.; Zhang, X.; Xu, Y.; Ma, Y.; Zhang, X.; Sun, X.; Ma, Y. Adv. Funct. Mater. 2023, 33, 2308284. doi: 10.1002/adfm.202308284  doi: 10.1002/adfm.202308284

    29. [29]

      Liu, X.; Lyu, D.; Merlet, C.; Leesmith, M. J. A.; Hua, X.; Xu, Z.; Grey, C. P.; Forse, A. C. Science 2024, 384, 321. doi: 10.1126/science.adn6242  doi: 10.1126/science.adn6242

    30. [30]

      Tang, S.; Lu, G.; Su, Y.; Wang, G.; Li, X.; Zhang, G.; Wei, Y.; Zhang, Y. Acta Phys. -Chim. Sin. 2020, 38, 2001007.  doi: 10.3866/PKU.WHXB202001007

    31. [31]

      Li, Q.; Jiang, Y.; Jiang, Z.; Zhu, J.; Gan, X.; Qin, F.; Tang, T.; Luo, W.; Guo, N.; Liu, Z.; et al. Carbon 2022, 191, 19. doi: 10.1016/j.carbon.2022.01.042  doi: 10.1016/j.carbon.2022.01.042

    32. [32]

      Liu, W.; Jiang, H.; Yu, H. Chem. Rev. 2015, 115, 12251. doi: 10.1021/acs.chemrev.5b00195  doi: 10.1021/acs.chemrev.5b00195

    33. [33]

      Shi, J.; Huang, T.; Wu, R.; Wu, J.; Li, Y.; Kuang, Y.; Xing, H.; Zhang, W. Int. J. Biol. Macromol. 2024, 264, 130460. doi: 10.1016/j.ijbiomac.2024.130460  doi: 10.1016/j.ijbiomac.2024.130460

    34. [34]

      Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Adv. Mater. 2017, 29, 1605336. doi: 10.1002/adma.201605336  doi: 10.1002/adma.201605336

    35. [35]

      Zhang, J.; Tang, T.; Gan, X.; Yuan, R.; Li, Q.; Zhu, L.; Guo, N.; Zhu, J.; Li, Y.; Zhang, S.; et al. Chem. Eng. J. 2023, 470, 144257. doi: 10.1016/j.cej.2023.144257  doi: 10.1016/j.cej.2023.144257

    36. [36]

      Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. J. Power Sources 2017, 341, 309. doi: 10.1016/j.jpowsour.2016.12.022  doi: 10.1016/j.jpowsour.2016.12.022

    37. [37]

      Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Adv. Funct. Mater. 2019, 29, 1901127. doi: 10.1002/adfm.201901127  doi: 10.1002/adfm.201901127

    38. [38]

      Qin, F.; Li, Q.; Tang, T.; Zhu, J.; Gan, X.; Chen, Y.; Li, Y.; Zhang, S.; Huang, X.; Jia, D. Fuel 2022, 322, 124216. doi: 10.1016/j.fuel.2022.124216  doi: 10.1016/j.fuel.2022.124216

    39. [39]

      Liang, Q.; Ye, L.; Huang, Z.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q. Nanoscale 2014, 6, 13831. doi: 10.1039/c4nr04541f  doi: 10.1039/c4nr04541f

    40. [40]

      Jiang, Y.; Li, J.; Jiang, Z.; Shi, M.; Sheng, R.; Liu, Z.; Zhang, S.; Cao, Y.; Wei, T.; Fan, Z. Carbon 2021, 175, 281. doi: 10.1016/j.carbon.2021.01.016  doi: 10.1016/j.carbon.2021.01.016

    41. [41]

      Xie, Q.; Bao, R.; Zheng, A.; Zhang, Y.; Wu, S.; Xie, C.; Zhao, P. ACS Sustain. Chem. Eng. 2016, 4, 1422. doi: 10.1021/acssuschemeng.5b01417  doi: 10.1021/acssuschemeng.5b01417

    42. [42]

      Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. ACS Appl. Mater. Interf. 2012, 4, 5800. doi: 10.1021/am302077c  doi: 10.1021/am302077c

    43. [43]

      Pritzl, D.; Bumberger, A. E.; Wetjen, M.; Landesfeind, J.; Solchenbach, S.; Gasteiger, H. A. J. Electrochem. Soc. 2019, 166, 582. doi: 10.1149/2.0451904jes  doi: 10.1149/2.0451904jes

    44. [44]

      Landesfeind, J.; Pritzl, D.; Gasteiger, H. A. J. Electrochem. Soc. 2017, 164, 1773. doi: 10.1149/2.0131709jes  doi: 10.1149/2.0131709jes

    45. [45]

      Zou, K.; Cai, P.; Deng, X.; Wang, B.; Liu, C.; Li, J.; Hou, H.; Zou, G.; Ji, X. J. Energy Chem. 2021, 60, 209. doi: 10.1016/j.jechem.2020.12.039  doi: 10.1016/j.jechem.2020.12.039

    46. [46]

      Wang, Q.; Qu, Y.; Bai, J.; Chen, Z.; Luo, Q.; Li, H.; Li, J.; Yang, W. Nano Energy 2024, 120, 109147. doi: 10.1016/j.nanoen.2023.109147  doi: 10.1016/j.nanoen.2023.109147

    47. [47]

      Zhang, F.; Liu, T.; Hou, G.; Kou, T.; Yue, L.; Guan, R.; Li, Y. Nano Res. 2016, 9, 2875. doi: 10.1007/s12274-016-1173-z  doi: 10.1007/s12274-016-1173-z

    48. [48]

      Dang, Z.; Li, X.; Li, Y.; Dong, L. J. Colloid Interf. Sci. 2023, 644, 221. doi: 10.1016/j.jcis.2023.04.074  doi: 10.1016/j.jcis.2023.04.074

    49. [49]

      Peng, X.; Li, Y.; Kang, F.; Li, X.; Zheng, Z.; Dong, L. Small 2024, 20, 2305547. doi: 10.1002/smll.202305547  doi: 10.1002/smll.202305547

    50. [50]

      Irham, M. A.; Septianto, R. D.; Wulandari, R. D.; Majima, Y.; Iskandar, F.; Iwasa, Y.; Bisri, S. Z. ACS Appli. Mater. Interfaces 2024, 16, 24889. doi: 10.1021/acsami.4c02517  doi: 10.1021/acsami.4c02517

    51. [51]

      Liu, C.; Yan, X.; Hu, F.; Gao, G.; Wu, G.; Yang, X. Adv. Mater. 2018, 30, 1705713. doi: 10.1002/adma.201705713  doi: 10.1002/adma.201705713

    52. [52]

      Alexander, C. F.; Griffin, J. M.; Merlet, C.; Carretero-Gonzalez, J.; Raji, A. -R. O.; Trease, N. M.; Grey, C. P. Nat. Energy 2017, 2, 16216. doi: 10.1038/nenergy.2016.216  doi: 10.1038/nenergy.2016.216

    53. [53]

      Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Adv. Mater. 2014, 26, 2219. doi: 10.1002/adma.201304137  doi: 10.1002/adma.201304137

    54. [54]

      Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760. doi: 10.1126/science.1132195  doi: 10.1126/science.1132195

    55. [55]

      Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Angew. Chem. Int. Ed. 2008, 120, 3440. doi: 10.1002/ange.200704894  doi: 10.1002/ange.200704894

    56. [56]

      Stoller, M. D.; Park S.; Zhu, Y.; An, J.; Rodney, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    57. [57]

      Díez, N.; Sevilla, M.; Fuertes, A. B. Chem. Electro. Chem. 2020, 7, 3798. doi: 10.1002/celc.202000960  doi: 10.1002/celc.202000960

    58. [58]

      Ferrero, G. A.; Fuertes, A. B.; Sevilla, M. Electrochim. Acta 2015, 168, 320. doi: 10.1016/j.electacta.2015.04.052  doi: 10.1016/j.electacta.2015.04.052

    59. [59]

      Huang, L.; Key, J.; Shen, P. K. J. Power Sources 2019, 414, 76. doi: 10.1016/j.jpowsour.2018.12.060  doi: 10.1016/j.jpowsour.2018.12.060

    60. [60]

      Chen, Q.; Sun, J.; Wang, Z.; Zhao, Z.; Zhang, Y.; Liu, Y.; Hou, L.; Yuan, C. RSC Adv. 2018, 8, 9181. doi:10.1039/c8ra00858  doi: 10.1039/c8ra00858

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    14. [14]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    17. [17]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    18. [18]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    19. [19]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    20. [20]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

Metrics
  • PDF Downloads(0)
  • Abstract views(94)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return