Citation: Yikai Wang, Xiaolin Jiang, Haoming Song, Nan Wei, Yifan Wang, Xinjun Xu, Cuihong Li, Hao Lu, Yahui Liu, Zhishan Bo. Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240600. doi: 10.3866/PKU.WHXB202406007 shu

Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells

  • Corresponding author: Cuihong Li, licuihong@bnu.edu.cn Hao Lu, luhao@qdu.edu.cn Yahui Liu,  Zhishan Bo, zsbo@bnu.edu.cn
  • Received Date: 6 June 2024
    Revised Date: 10 July 2024
    Accepted Date: 11 July 2024

    Fund Project: the National Natural Science Foundation of China 22375024the National Natural Science Foundation of China 21975031the National Natural Science Foundation of China 51933001the National Natural Science Foundation of China 21734009

  • Interlayer materials play a crucial role in achieving high efficiency in organic solar cells (OSCs). However, slight increases in film thickness often lead to significant charge accumulation and recombination, presenting a challenge for large-scale OSC device fabrication. Therefore, there is a pressing need for interlayer materials that are insensitive to variations in thickness. In this study, we synthesized a cost-effective cyano-modified perylene diimide (PDI) derivative, PDINBrCN, as an interlayer material. Compared to the analogous PDINBr, the introduction of cyano groups lowers the lowest unoccupied molecular orbital (LUMO) energy level of the molecule, enhancing electron injection and charge transport efficiency. Additionally, PDINBrCN demonstrates excellent solubility in 2, 2, 2-trifluoroethanol (TFE) and effectively modifies the electrode work function, facilitating device fabrication through orthogonal solvent processing. When utilized as the cathode interlayer in D18:L8-BO devices, PDINBrCN achieved a high power conversion efficiency (PCE) of 18.83% with a film thickness of 10 nm. Importantly, PDINBrCN maintained a PCE of 17.90% even when the film thickness was increased to 50 nm. In contrast, the analogous PDI derivatives PDINBr and the star cathode interlayer material anthra[2, 1, 9-def: 6, 5, 10-d'e'f']diisoquinoline-1, 3, 8, 10(2H, 9H)-tetrone (PDINN) achieved PCEs of 17.17% and 17.06%, respectively, at the same film thickness. Notably, PDINBrCN maintained a PCE of over 16% even with an interlayer thickness of 80 nm, marking one of the best results for small molecule PDI derivatives as cathode interlayer materials at this thickness. Our findings demonstrate that PDINBrCN exhibits excellent processability, electrode work function adjustment capability, and crucially, thickness-insensitive properties. Therefore, PDINBrCN holds promise as an efficient and cost-effective cathode interlayer material, with potential for future commercial applications in OSCs.
  • 加载中
    1. [1]

      Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Nat. Mater. 2022, 21 (6), 656. doi: 10.1038/s41563-022-01244-y  doi: 10.1038/s41563-022-01244-y

    2. [2]

      Wang, J.; Zheng, Z.; Bi, P.; Chen, Z.; Wang, Y.; Liu, X.; Zhang, S.; Hao, X.; Zhang, M.; Li, Y.; Hou, J. Natl. Sci. Rev. 2023, 10 (6), nwad085. doi: 10.1093/nsr/nwad085  doi: 10.1093/nsr/nwad085

    3. [3]

      Lu, H.; Liu, W.; Ran, G.; Liang, Z.; Li, H.; Wei, N.; Wu, H.; Ma, Z.; Liu, Y.; Zhang, W.; Xu, X.; Bo, Z. Angew. Chem. Int. Ed. 2023, 62 (50), e202314420. doi: 10.1002/anie.202314420  doi: 10.1002/anie.202314420

    4. [4]

      Wang, C.; Chen, Q.; Zhang, C.; Han, B.; Liu, X.; Liang, S.; Wang, B.; Xiao, C.; Gao, B.; Tang, Z.; et al. CCS Chem. doi: 10.31635/ccschem.024.202404023  doi: 10.31635/ccschem.024.202404023

    5. [5]

      Li, R.; Liang, S.; Xu, Y.; Zhang, C.; Tang, Z.; Liu, B.; Li, W. Acta Phys. -Chim. Sin. 2024, 40 (8), 2307037.  doi: 10.3866/PKU.WHXB202307037

    6. [6]

      Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. Adv. Mater. 2015, 27 (31), 4655. doi: 10.1002/adma.201502110  doi: 10.1002/adma.201502110

    7. [7]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28 (23), 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    8. [8]

      Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J. Adv. Mater. 2018, 30 (16), 1707170. doi: 10.1002/adma.201707170  doi: 10.1002/adma.201707170

    9. [9]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3 (4), 1140. doi: 10.1016/j.joule.2019.01.004  doi: 10.1016/j.joule.2019.01.004

    10. [10]

      Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65(4), 272. doi: 10.1016/j.scib.2020.01.001  doi: 10.1016/j.scib.2020.01.001

    11. [11]

      Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Nat. Energy 2021, 6 (6), 605. doi: 10.1038/s41560-021-00820-x  doi: 10.1038/s41560-021-00820-x

    12. [12]

      Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27 (7), 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    13. [13]

      Ren, Z.; Luo, S.; Shi, X.; Dou, Y.; Liu, T.; Wang, L.; Tsang, K.; Wang, F.; Zhao, Y.; Liu, Y.; et al. Sci. China Chem. 2024, 67, 1941. doi: 10.1007/s11426-024-2054-8  doi: 10.1007/s11426-024-2054-8

    14. [14]

      Zhang, K. Acta Polym. Sin. 2022, 53 (7), 737. doi: 10.11777/j.issn1000-3304.2022.22055  doi: 10.11777/j.issn1000-3304.2022.22055

    15. [15]

      Zhang, M.; Feng, S.; Wu, Y.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39 (2), 2205050.  doi: 10.3866/PKU.WHXB202205050

    16. [16]

      Guan, S.; Li, Y.; Xu, C.; Yin, N.; Xu, C.; Wang, C.; Wang, M.; Xu, Y.; Chen, Q.; Wang, D.; et al. Adv. Mater. 2024, 36, 2400342. doi: 10.1002/adma.202400342  doi: 10.1002/adma.202400342

    17. [17]

      Chow, P. Acta Polym. Sin. 2023, 54 (6), 927. doi: 10.11777/j.issn1000-3304.2023.23020  doi: 10.11777/j.issn1000-3304.2023.23020

    18. [18]

      Liang, Q.; Chang, Y.; Liang, C.; Zhu, H.; Guo, Z.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39 (7), 2212006.  doi: 10.3866/PKU.WHXB202212006

    19. [19]

      Zhao, Y.; Chen, C.; Liu, W.; Hu, W.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39 (8), 2211017.  doi: 10.3866/PKU.WHXB202211017

    20. [20]

      Guo, Y.; Li, D.; Gao, Y.; Li, C. Acta Phys. -Chim. Sin. 2024, 40 (6), 2306050.  doi: 10.3866/PKU.WHXB202306050

    21. [21]

      Liu, Y.; Page, Z. A.; Russell, T. P.; Emrick, T. Angew. Chem. Int. Ed. 2015, 54 (39), 11485. doi: 10.1002/anie.201503933  doi: 10.1002/anie.201503933

    22. [22]

      Chen, Q.; Wang, C.; Li, Y.; Chen, L. J. Am. Chem. Soc. 2020, 142 (43), 18281. doi: 10.1021/jacs.0c07439  doi: 10.1021/jacs.0c07439

    23. [23]

      Zhu, C.; Tian, J.; Liu, W.; Duan, Y.; Song, Y.; You, Z.; Wang, X.; Li, N.; Zhan, X.; Russell, T. P.; et al. ACS Energy Lett. 2023, 8 (6), 2689. doi: 10.1021/acsenergylett.3c00584  doi: 10.1021/acsenergylett.3c00584

    24. [24]

      Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. Science 2012, 336 (6079), 327. doi: 10.1126/science.1218829  doi: 10.1126/science.1218829

    25. [25]

      Baek, S.; Hun Kim, J.; Kang, J.; Lee, H.; Young Park, J.; Lee, J. Adv. Energy Mater. 2015, 5 (24), 1501393. doi: 10.1002/aenm.201501393  doi: 10.1002/aenm.201501393

    26. [26]

      He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6 (9), 591. doi: 10.1038/nphoton.2012.190  doi: 10.1038/nphoton.2012.190

    27. [27]

      Zhang, J.; Zhang, X.; Xiao, H.; Li, G.; Liu, Y.; Li, C.; Huang, H.; Chen, X.; Bo, Z. ACS Appl. Mater. Interf. 2016, 8 (8), 5475. doi: 10.1021/acsami.5b10211  doi: 10.1021/acsami.5b10211

    28. [28]

      Li, G.; Gong, X.; Zhang, J.; Liu, Y.; Feng, S.; Li, C.; Bo, Z. ACS Appl. Mater. Interf. 2016, 8 (6), 3686. doi: 10.1021/acsami.5b08769  doi: 10.1021/acsami.5b08769

    29. [29]

      Zhang, Z.; Feng, W. Y.; Zhang, Y. X.; Yuan, S. H.; Bai, Y. Y.; Wang, P. R.; Yao, Z. Y.; Li, C. X.; Duan, T. N.; Wan, X. J.; et al. Sci. China Chem. 2024, 67, 1596. doi: 10.1007/s11426-024-1948-6  doi: 10.1007/s11426-024-1948-6

    30. [30]

      Zhang, Z.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7 (6), 1966. doi: 10.1039/C4EE00022F  doi: 10.1039/C4EE00022F

    31. [31]

      Yao, J.; Qiu, B.; Zhang, Z.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; et al. Nat. Commun. 2020, 11 (1), 2726. doi: 10.1038/s41467-020-16509-w  doi: 10.1038/s41467-020-16509-w

    32. [32]

      Yao, J.; Ding, S.; Zhang, R.; Bai, Y.; Zhou, Q.; Meng, L.; Solano, E.; Steele, J. A.; Roeffaers, M.; Gao, F.; et al. Adv. Mater. 2022, 34 (32), 2203690. doi: 10.1002/adma.202203690  doi: 10.1002/adma.202203690

    33. [33]

      Liu, M.; Jiang, Y.; Liu, D.; Wang, J.; Ren, Z.; Russell, T.; Liu, Y. ACS Energy Lett. 2021, 6 (9), 3228. doi: 10.1021/acsenergylett.1c01482  doi: 10.1021/acsenergylett.1c01482

    34. [34]

      Zhou, D.; Han, L.; Hu, L.; Yang, S.; Shen, X.; Li, Y.; Tong, Y.; Wang, F.; Li, Z.; Chen, L. ACS Appl. Mater. Interf. 2023, 15 (6), 8367. doi: 10.1021/acsami.2c22069  doi: 10.1021/acsami.2c22069

    35. [35]

      Mai, T.; Jeong, S.; Kim, S.; Jung, S. W.; Oh, J.; Sun, Z.; Park, J.; Lee, S. L.; Kim, W.; Yang, C. D. Adv. Funct. Mater. 2023, 33 (36), 2303386. doi: 10.1002/adfm.202303386  doi: 10.1002/adfm.202303386

    36. [36]

      Tian, L.; Feng, L.; Guo, S.; Wang, R.; Zhang, K.; Cui, C. J. Mater. Chem. A. 2024, 12 (11), 6644. doi: 10.1039/d3ta07443a  doi: 10.1039/d3ta07443a

    37. [37]

      Chen, S.; Liu, Y.; Qiu, W.; Sun, X.; Ma, Y.; Zhu, D. Chem. Mater. 2005, 17 (8), 2208. doi: 10.1021/cm048642z  doi: 10.1021/cm048642z

    38. [38]

      Wiebeler, C.; Vollbrecht, J.; Neuba, A.; Kitzerow, H.; Schumacher, S. Sci. Rep. 2021, 11 (1), 16097. doi: 10.1038/s41598-021-95551-0  doi: 10.1038/s41598-021-95551-0

    39. [39]

      Page, Z. A.; Liu, Y.; Duzhko, V. V.; Russell, T. P.; Emrick, T. Science 2014, 346 (6208), 441. doi: 10.1126/science.1255826  doi: 10.1126/science.1255826

    40. [40]

      Yang, D.; Cao, B.; Müller-Buschbaum, P. ACS Appl. Mater. Interf. 2021, 13 (38), 46134. doi: 10.1021/acsami.1c12790  doi: 10.1021/acsami.1c12790

    41. [41]

      Cao, B.; He, X.; Fetterly, C. R.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. ACS Appl. Mater. Interf. 2016, 8 (28), 18238. doi: 10.1021/acsami.6b02712  doi: 10.1021/acsami.6b02712

    42. [42]

      Li, L.; Xu, J.; Luo, W.; Zhong, K.; Zhao, X.; Hu, Y.; Yuan, Z.; Chen, Y. J. Mater. Chem. A. 2023, 11 (44), 24136. doi: 10.1039/D3TA04833K  doi: 10.1039/D3TA04833K

    43. [43]

      Zhu, F.; Chen, X.; Lu, Z.; Yang, J.; Huang, S.; Sun, Z. Nano-Micro Lett. 2014, 6 (1), 24. doi:10.5101/nml.v6i1.pp. 24–29  doi: 10.5101/nml.v6i1.pp.24–29

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    4. [4]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    5. [5]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    8. [8]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    9. [9]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    13. [13]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    15. [15]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    16. [16]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(0)
  • Abstract views(122)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return