Citation: Yikai Wang,  Xiaolin Jiang,  Haoming Song,  Nan Wei,  Yifan Wang,  Xinjun Xu,  Cuihong Li,  Hao Lu,  Yahui Liu,  Zhishan Bo. 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240600. doi: 10.3866/PKU.WHXB202406007 shu

氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池

  • Received Date: 6 June 2024
    Revised Date: 10 July 2024
    Accepted Date: 11 July 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (22375024, 21975031, 51933001, and 21734009).

  • 开发膜厚不敏感型阴极界面材料是当前有机太阳能电池(OSCs)研究的重点和难点之一。在本研究中,我们设计并合成了一种低成本的氰基修饰的苝二酰亚胺衍生物PDINBrCN作为阴极界面层材料,PDINBrCN表现出良好的加工性和调节电极功函数的能力,当用作D18:L8-BO器件中的阴极界面层时,PDINBrCN在10 nm的膜厚度下实现了18.83%的光电转换效率(PCE),即使当膜厚度增加到50 nm时,器件仍然保持17.90%的PCE。因此,PDINBrCN有望成为一种高效、低成本的阴极界面层材料。
  • 加载中
    1. [1]

      (1) Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Nat. Mater. 2022, 21 (6), 656. doi:10.1038/s41563-022-01244-y

    2. [2]

      (2) Wang, J.; Zheng, Z.; Bi, P.; Chen, Z.; Wang, Y.; Liu, X.; Zhang, S.; Hao, X.; Zhang, M.; Li, Y.; Hou, J. Natl. Sci. Rev. 2023, 10 (6), nwad085. doi:10.1093/nsr/nwad085

    3. [3]

      (3) Lu, H.; Liu, W.; Ran, G.; Liang, Z.; Li, H.; Wei, N.; Wu, H.; Ma, Z.; Liu, Y.; Zhang, W.; Xu, X.; Bo, Z. Angew. Chem. Int. Ed. 2023, 62 (50), e202314420. doi:10.1002/anie.202314420

    4. [4]

      (4) Wang, C.; Chen, Q.; Zhang, C.; Han, B.; Liu, X.; Liang, S.; Wang, B.; Xiao, C.; Gao, B.; Tang, Z.; et al. CCS Chem. doi:10.31635/ccschem.024.202404023

    5. [5]

    6. [6]

      (6) Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. Adv. Mater. 2015, 27 (31), 4655. doi:10.1002/adma.201502110

    7. [7]

      (7) Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28 (23), 4734. doi:10.1002/adma.201600281

    8. [8]

      (8) Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J. Adv. Mater. 2018, 30 (16), 1707170. doi:10.1002/adma.201707170

    9. [9]

      (9) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3 (4), 1140. doi:10.1016/j.joule.2019.01.004

    10. [10]

      (10) Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65(4), 272. doi:10.1016/j.scib.2020.01.001

    11. [11]

      (11) Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Nat. Energy 2021, 6 (6), 605. doi:10.1038/s41560-021-00820-x

    12. [12]

      (12) Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27 (7), 1170. doi:10.1002/adma.201404317

    13. [13]

      (13) Ren, Z.; Luo, S.; Shi, X.; Dou, Y.; Liu, T.; Wang, L.; Tsang, K.; Wang, F.; Zhao, Y.; Liu, Y.; et al. Sci. China Chem. 2024, 67, 1941. doi:10.1007/s11426-024-2054-8

    14. [14]

      (14) Zhang, K. Acta Polym. Sin. 2022, 53 (7), 737. doi:10.11777/j.issn1000-3304.2022.22055

    15. [15]

    16. [16]

      (16) Guan, S.; Li, Y.; Xu, C.; Yin, N.; Xu, C.; Wang, C.; Wang, M.; Xu, Y.; Chen, Q.; Wang, D.; et al. Adv. Mater. 2024, 36, 2400342. doi:10.1002/adma.202400342

    17. [17]

      (17) Chow, P. Acta Polym. Sin. 2023, 54 (6), 927. doi:10.11777/j.issn1000-3304.2023.23020

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      (21) Liu, Y.; Page, Z. A.; Russell, T. P.; Emrick, T. Angew. Chem. Int. Ed. 2015, 54 (39), 11485. doi:10.1002/anie.201503933

    22. [22]

      (22) Chen, Q.; Wang, C.; Li, Y.; Chen, L. J. Am. Chem. Soc. 2020, 142 (43), 18281. doi:10.1021/jacs.0c07439

    23. [23]

      (23) Zhu, C.; Tian, J.; Liu, W.; Duan, Y.; Song, Y.; You, Z.; Wang, X.; Li, N.; Zhan, X.; Russell, T. P.; et al. ACS Energy Lett. 2023, 8 (6), 2689. doi:10.1021/acsenergylett.3c00584

    24. [24]

      (24) Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. Science 2012, 336 (6079), 327. doi:10.1126/science.1218829

    25. [25]

      (25) Baek, S.; Hun Kim, J.; Kang, J.; Lee, H.; Young Park, J.; Lee, J. Adv. Energy Mater. 2015, 5 (24), 1501393. doi:10.1002/aenm.201501393

    26. [26]

      (26) He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6 (9), 591. doi:10.1038/nphoton.2012.190

    27. [27]

      (27) Zhang, J.; Zhang, X.; Xiao, H.; Li, G.; Liu, Y.; Li, C.; Huang, H.; Chen, X.; Bo, Z. ACS Appl. Mater. Interf. 2016, 8 (8), 5475. doi:10.1021/acsami.5b10211

    28. [28]

      (28) Li, G.; Gong, X.; Zhang, J.; Liu, Y.; Feng, S.; Li, C.; Bo, Z. ACS Appl. Mater. Interf. 2016, 8 (6), 3686. doi:10.1021/acsami.5b08769

    29. [29]

      (29) Zhang, Z.; Feng, W. Y.; Zhang, Y. X.; Yuan, S. H.; Bai, Y. Y.; Wang, P. R.; Yao, Z. Y.; Li, C. X.; Duan, T. N.; Wan, X. J.; et al. Sci. China Chem. 2024, 67, 1596. doi:10.1007/s11426-024-1948-6

    30. [30]

      (30) Zhang, Z.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7 (6), 1966. doi:10.1039/C4EE00022F

    31. [31]

      (31) Yao, J.; Qiu, B.; Zhang, Z.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; et al. Nat. Commun. 2020, 11 (1), 2726. doi:10.1038/s41467-020-16509-w

    32. [32]

      (32) Yao, J.; Ding, S.; Zhang, R.; Bai, Y.; Zhou, Q.; Meng, L.; Solano, E.; Steele, J. A.; Roeffaers, M.; Gao, F.; et al. Adv. Mater. 2022, 34 (32), 2203690. doi:10.1002/adma.202203690

    33. [33]

      (33) Liu, M.; Jiang, Y.; Liu, D.; Wang, J.; Ren, Z.; Russell, T.; Liu, Y. ACS Energy Lett. 2021, 6 (9), 3228. doi:10.1021/acsenergylett.1c01482

    34. [34]

      (34) Zhou, D.; Han, L.; Hu, L.; Yang, S.; Shen, X.; Li, Y.; Tong, Y.; Wang, F.; Li, Z.; Chen, L. ACS Appl. Mater. Interf. 2023, 15 (6), 8367. doi:10.1021/acsami.2c22069

    35. [35]

      (35) Mai, T.; Jeong, S.; Kim, S.; Jung, S. W.; Oh, J.; Sun, Z.; Park, J.; Lee, S. L.; Kim, W.; Yang, C. D. Adv. Funct. Mater. 2023, 33 (36), 2303386. doi:10.1002/adfm.202303386

    36. [36]

      (36) Tian, L.; Feng, L.; Guo, S.; Wang, R.; Zhang, K.; Cui, C. J. Mater. Chem. A. 2024, 12 (11), 6644. doi:10.1039/d3ta07443a

    37. [37]

      (37) Chen, S.; Liu, Y.; Qiu, W.; Sun, X.; Ma, Y.; Zhu, D. Chem. Mater. 2005, 17 (8), 2208. doi:10.1021/cm048642z

    38. [38]

      (38) Wiebeler, C.; Vollbrecht, J.; Neuba, A.; Kitzerow, H.; Schumacher, S. Sci. Rep. 2021, 11 (1), 16097. doi:10.1038/s41598-021-95551-0

    39. [39]

      (39) Page, Z. A.; Liu, Y.; Duzhko, V. V.; Russell, T. P.; Emrick, T. Science 2014, 346 (6208), 441. doi:10.1126/science.1255826

    40. [40]

      (40) Yang, D.; Cao, B.; Müller-Buschbaum, P. ACS Appl. Mater. Interf. 2021, 13 (38), 46134. doi:10.1021/acsami.1c12790

    41. [41]

      (41) Cao, B.; He, X.; Fetterly, C. R.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. ACS Appl. Mater. Interf. 2016, 8 (28), 18238. doi:10.1021/acsami.6b02712

    42. [42]

      (42) Li, L.; Xu, J.; Luo, W.; Zhong, K.; Zhao, X.; Hu, Y.; Yuan, Z.; Chen, Y. J. Mater. Chem. A. 2023, 11 (44), 24136. doi:10.1039/D3TA04833K

    43. [43]

      (43) Zhu, F.; Chen, X.; Lu, Z.; Yang, J.; Huang, S.; Sun, Z. Nano-Micro Lett. 2014, 6 (1), 24. doi:10.5101/nml.v6i1.pp. 24–29

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    9. [9]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(0)
  • Abstract views(61)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return