Citation: Qianqian Liu, Xing Du, Wanfei Li, Wei-Lin Dai, Bo Liu. Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231101. doi: 10.3866/PKU.WHXB202311016 shu

Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance

  • Corresponding author: Qianqian Liu, liuqianqian@usts.edu.cn Wei-Lin Dai, wldai@fudan.edu.cn Bo Liu, liubo@mail.usts.edu.cn
  • Received Date: 10 November 2023
    Revised Date: 15 December 2023
    Accepted Date: 18 December 2023
    Available Online: 2 January 2024

    Fund Project: National Natural Science Foundation of China 22002102National Natural Science Foundation of China 61904118National Natural Science Foundation of China 62205231Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX22_1555

  • Directional electron transfer is an appealing strategy for harnessing photogenerated charge separation kinetics. Herein, a novel 2D/1D SnNb2O6/nitrogen-enriched C3N5 S-scheme heterojunction with strong internal electric field (IEF) and dipole field (DF) is designed through in situ growth of C3N5 nanorods on SnNb2O6 nanosheets. The IEF generated at the interface via the formation of the S-scheme heterojunction induces directional charge transfer from SnNb2O6 to C3N5. Simultaneously, the DF within C3N5 provides the impetus to guide photo-excited electrons to the active sites. Consequently, the synergistic effects of IEF and DF facilitate swift directional electron transfer. The optimized SnNb2O6/C3N5 heterojunction demonstrates a remarkable H2 production rate of 1090.0 μmol∙g−1∙h−1 with continuous release of H2 bubbles. This performance surpasses that of SnNb2O6 and C3N5 by 38.8 and 10.7 times, respectively. Additionally, the SnNb2O6/C3N5 heterojunction exhibits superior activity in the removal of Rhodamine B, tetracycline, and Cr(Ⅵ). Based on electron paramagnetic resonance (EPR), time-resolved photoluminescence (TPRL) and density functional theory (DFT) calculations, etc., the directional charge transfer mechanism was systematically explored. The research furnishes a plausible approach to construct effective heterojunction photocatalysts for applications in energy and environmental domains.
  • 加载中
    1. [1]

      Liu, Q.; Du, X.; Gu, H.; Cheng, M.; Hu, J.; Wei, T.; Li, W.; Liu, B.; Dai, W.-L. J. Phys. D: Appl. Phys. 2022, 55, 484002. doi: 10.1088/1361-6463/ac962e  doi: 10.1088/1361-6463/ac962e

    2. [2]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4  doi: 10.1016/S1872-2067(23)64444-4

    3. [3]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    4. [4]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    5. [5]

      Shi, W.-L.; Xu, Z.; Shi, Y.-X.; Li, L.-L.; Lu, J.-L.; Sun, X.-H.; Du, X.; Guo, F.; Lu, C.-Y. Rare Met. 2023, 43, 198. doi: 10.1007/s12598-023-02403-z  doi: 10.1007/s12598-023-02403-z

    6. [6]

      Yang, F.; Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Dai, W.-L. Appl. Catal. B-Environ. 2020, 278, 119290. doi: 10.1016/j.apcatb.2020.119290  doi: 10.1016/j.apcatb.2020.119290

    7. [7]

      Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2023, 100208. doi: 10.1016/j.esci.2023.100208  doi: 10.1016/j.esci.2023.100208

    8. [8]

      Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Chang, S.; Huang, Y.; Gao, L.; Cui, Y.; Liu, R.; Dai, W.-L. Appl. Catal. B-Environ. 2023, 328, 122537. doi: 10.1016/j.apcatb.2023.122537  doi: 10.1016/j.apcatb.2023.122537

    9. [9]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38, 2110049.  doi: 10.3866/PKU.WHXB202110049

    10. [10]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026.  doi: 10.3866/PKU.WHXB202212026

    11. [11]

      Li, L.; Zhang, Q.; Wang, X.; Zhang, J.; Gu, H.; Dai, W.-L. J. Phys. Chem. C 2021, 125, 10964. doi: 10.1021/acs.jpcc.1c02269  doi: 10.1021/acs.jpcc.1c02269

    12. [12]

      Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39, 2212062.  doi: 10.3866/PKU.WHXB202212062

    13. [13]

      Chellapandi, T.; Madhumitha, G.; Roopan, S. M.; Manjupriya, R.; Arunachalapandi, M.; Pouthika, K.; Elamathi, M. Sep. Purif. Technol. 2023, 307, 122865. doi: 10.1016/j.seppur.2022.122865  doi: 10.1016/j.seppur.2022.122865

    14. [14]

      Xiong, Z.; Liang, Y.; Yang, J.; Yang, G.; Jia, J.; Sa, K.; Zhang, X.; Zeng, Z. Sep. Purif. Technol. 2023, 306, 122522. doi: 10.1016/j.seppur.2022.122522  doi: 10.1016/j.seppur.2022.122522

    15. [15]

      Li, Z.; Zhou, Y.; Zhou, Y.; Wang, K.; Yun, Y.; Chen, S.; Jiao, W.; Chen, L.; Zou, B.; Zhu, M. Nat. Commun. 2023, 14, 5742. doi: 10.1038/s41467-023-41522-0  doi: 10.1038/s41467-023-41522-0

    16. [16]

      Liu, Z.; Zhang, C.; Liu, L.; Zhang, T.; Wang, J.; Wang, R.; Du, T.; Yang, C.; Zhang, L.; Xie, L.; et al. . Adv. Mater. 2021, 33, 2104099. doi: 10.1002/adma.202104099  doi: 10.1002/adma.202104099

    17. [17]

      Zhang, J.; Gu, H.; Wang, X.; Zhang, H.; Chang, S.; Li, Q.; Dai, W.-L. J. Colloid Interface Sci. 2022, 625, 785. doi: 10.1016/j.jcis.2022.06.074  doi: 10.1016/j.jcis.2022.06.074

    18. [18]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    19. [19]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    20. [20]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037.  doi: 10.3866/PKU.WHXB202209037

    21. [21]

      Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Chem. Eng. J. 2020, 379, 122264. doi: 10.1016/j.cej.2019.122264  doi: 10.1016/j.cej.2019.122264

    22. [22]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009  doi: 10.1016/j.jmst.2023.05.009

    23. [23]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    24. [24]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009.  doi: 10.3866/PKU.WHXB202212009

    25. [25]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    26. [26]

      Liu, Q.; Zhang, Q.; Liu, B.; Dai, W.-L. Nanotechnology 2021, 32, 065705. doi: 10.1088/1361-6528/abc3e3  doi: 10.1088/1361-6528/abc3e3

    27. [27]

      Wang, Z.; Wang, H.; Shi, Y.; Liu, C.; Wu, L. Chem. Eng. J. 2022, 429, 132018. doi: 10.1016/j.cej.2021.132018  doi: 10.1016/j.cej.2021.132018

    28. [28]

      Cao, J.-T.; Ma, Y.; Lv, J.-L.; Ren, S.-W.; Liu, Y.-M. Chem. Commun. 2020, 56, 1513. doi: 10.1039/C9CC09102E  doi: 10.1039/C9CC09102E

    29. [29]

      Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. ACS Sustain. Chem. Eng. 2019, 7, 625. doi: 10.1021/acssuschemeng.8b04182  doi: 10.1021/acssuschemeng.8b04182

    30. [30]

      Liang, S.; Liang, R.; Wen, L.; Yuan, R.; Wu, L.; Fu, X. Appl. Catal. B-Environ. 2012, 125, 103. doi: 10.1016/j.apcatb.2012.05.017  doi: 10.1016/j.apcatb.2012.05.017

    31. [31]

      Yuan, L.; Yang, M.-Q.; Xu, Y.-J. Nanoscale 2014, 6, 6335. doi: 10.1039/C4NR00116H  doi: 10.1039/C4NR00116H

    32. [32]

      Vadivel, S.; Hariganesh, S.; Paul, B.; Rajendran, S.; Habibi-Yangjeh, A.; Maruthamani, D.; Kumaravel, M. Chem. Phys. Lett. 2020, 738, 136862. doi: 10.1016/j.cplett.2019.136862  doi: 10.1016/j.cplett.2019.136862

    33. [33]

      Pagacz-Kostrzewa, M.; Bronisz, R.; Wierzejewska, M. Chem. Phys. Lett. 2009, 473, 238. doi: 10.1016/j.cplett.2009.03.079  doi: 10.1016/j.cplett.2009.03.079

    34. [34]

      Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Sol. RRL 2018, 2, 1800006. doi: 10.1002/solr.201800006  doi: 10.1002/solr.201800006

    35. [35]

      Katritzky, A. R. Chem. Heterocycl. Compd. 1972, 8, 917. doi: 10.1007/BF00476314  doi: 10.1007/BF00476314

    36. [36]

      Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Adv. Mater. 2017, 29, 1605148. doi: 10.1002/adma.201605148  doi: 10.1002/adma.201605148

    37. [37]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B-Environ. 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    38. [38]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    39. [39]

      Wang, L.; Chen, R.; Zhang, Z.; Chen, X.; Ding, J.; Zhang, J.; Wan, H.; Guan, G. J. Environ. Chem. Eng. 2023, 11, 109345. doi: 10.1016/j.jece.2023.109345  doi: 10.1016/j.jece.2023.109345

    40. [40]

      Cui, Y.; Zhang, G.; Lin, Z.; Wang, X. Appl. Catal. B-Environ. 2016, 181, 413. doi: 10.1016/j.apcatb.2015.08.018  doi: 10.1016/j.apcatb.2015.08.018

    41. [41]

      Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1  doi: 10.1016/S1872-2067(23)64496-1

    42. [42]

      Li, Q.; Kako, T.; Ye, J. Int. J. Hydrog. Energy 2011, 36, 4716. doi: 10.1016/j.ijhydene.2011.01.082  doi: 10.1016/j.ijhydene.2011.01.082

    43. [43]

      Atuchin, V. V.; Kalabin, I. E.; Kesler, V. G.; Pervukhina, N. V. J. Electron Spectrosc. 2005, 142, 129. doi: 10.1016/j.elspec.2004.10.003  doi: 10.1016/j.elspec.2004.10.003

    44. [44]

      Ding, J.; Wang, L.; Liu, Q.; Chai, Y.; Liu, X.; Dai, W.-L. Appl. Catal. B-Environ. 2015, 176–177, 91. doi: 10.1016/j.apcatb.2015.03.028  doi: 10.1016/j.apcatb.2015.03.028

    45. [45]

      Wang, H.; Yu, J.; Zhan, X.; Chen, L.; Sun, Y.; Shi, H. Appl. Surf. Sci. 2020, 528, 146938. doi: 10.1016/j.apsusc.2020.146938  doi: 10.1016/j.apsusc.2020.146938

    46. [46]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073.  doi: 10.3866/PKU.WHXB202010073

    47. [47]

      Jiang, D.; Wen, B.; Zhang, Y.; Jin, Y.; Li, D.; Chen, M. J. Colloid Interface Sci. 2019, 536, 1. doi: 10.1016/j.jcis.2018.10.027  doi: 10.1016/j.jcis.2018.10.027

    48. [48]

      Luo, B.; Hong, Y.; Li, D.; Fang, Z.; Jian, Y.; Shi, W. ACS Sustain. Chem. Eng. 2018, 6, 14332. doi: 10.1021/acssuschemeng.8b03006  doi: 10.1021/acssuschemeng.8b03006

    49. [49]

      Jin, Y.; Jiang, D.; Li, D.; Xiao, P.; Ma, X.; Chen, M. ACS Sustain. Chem. Eng. 2017, 5, 9749. doi: 10.1021/acssuschemeng.7b01548  doi: 10.1021/acssuschemeng.7b01548

    50. [50]

      Wang, H.; Chen, L.; Sun, Y.; Yu, J.; Zhao, Y.; Zhan, X.; Shi, H. Sep. Purif. Technol. 2021, 265, 118516. doi: 10.1016/j.seppur.2021.118516  doi: 10.1016/j.seppur.2021.118516

    51. [51]

      Butler, M. A. J. Appl. Phys. 1977, 48, 1914. doi: 10.1063/1.323948  doi: 10.1063/1.323948

    52. [52]

      Wu, L.; Yang, X.; Chen, T.; Li, Y.; Meng, Q.; Zhu, L.; Zhu, W.; He, R.; Duan, T. Chem. Eng. J. 2022, 427, 131773. doi: 10.1016/j.cej.2021.131773  doi: 10.1016/j.cej.2021.131773

    53. [53]

      Zhang, Z.; Jiang, D.; Li, D.; He, M.; Chen, M. Appl. Catal. B-Environ. 2016, 183, 113. doi: 10.1016/j.apcatb.2015.10.022  doi: 10.1016/j.apcatb.2015.10.022

    54. [54]

      Fang, C.; Hu, X.; Du, X.; Mao, G.; Wang, X.; Wang, L.; Liu, Q.; Ding, J. Appl. Catal. A 2023, 652, 119032. doi: 10.1016/j.apcata.2023.119032  doi: 10.1016/j.apcata.2023.119032

    55. [55]

      Wan, C.; Zhou, L.; Sun, L.; Xu, L.; Cheng, D.-G.; Chen, F.; Zhan, X.; Yang, Y. Chem. Eng. J. 2020, 396, 125229. doi: 10.1016/j.cej.2020.125229  doi: 10.1016/j.cej.2020.125229

    56. [56]

      Xu, Q.; Cheng, B.; Yu, J.; Liu, G. Carbon 2017, 118, 241. doi: 10.1016/j.carbon.2017.03.052  doi: 10.1016/j.carbon.2017.03.052

    57. [57]

      Yu, W.; Zhang, S.; Chen, J.; Xia, P.; Richter, M. H.; Chen, L.; Xu, W.; Jin, J.; Chen, S.; Peng, T. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/C8TA02922A  doi: 10.1039/C8TA02922A

    58. [58]

      Wang, C.; You, C.; Rong, K.; Shen, C.; Yang, F.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2307045.  doi: 10.3866/PKU.WHXB202307045

    59. [59]

      Li, S.; Chen, X.; Yuan, Y. Acta Phys. -Chim. Sin. 2023, 39, 2303032.  doi: 10.3866/PKU.WHXB202303032

    60. [60]

      Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Chem. Eng. J. 2021, 406, 126776. doi: 10.1016/j.cej.2020.126776  doi: 10.1016/j.cej.2020.126776

    61. [61]

      Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. Adv. Mater. 2018, 30, 1706108. doi: 10.1002/adma.201706108  doi: 10.1002/adma.201706108

    62. [62]

      Thenuwara, A. C.; Cerkez, E. B.; Shumlas, S. L.; Attanayake, N. H.; Mckendry, I. G.; Frazer, L.; Borguet, E.; Kang, Q.; Remsing, R. C.; Klein, M. L.; et al. Angew. Chem. Int. Ed. 2016, 55, 10381. doi: 10.1002/anie.201601935  doi: 10.1002/anie.201601935

    63. [63]

      Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409  doi: 10.1016/j.nanoen.2019.104409

    64. [64]

      Hua, J.; W, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    65. [65]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    66. [66]

      Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1  doi: 10.1016/S1872-2067(23)64479-1

    67. [67]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

  • 加载中
    1. [1]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    7. [7]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

Metrics
  • PDF Downloads(3)
  • Abstract views(732)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return