Citation: Qianqian Liu,  Xing Du,  Wanfei Li,  Wei-Lin Dai,  Bo Liu. Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231101. doi: 10.3866/PKU.WHXB202311016 shu

Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance

  • Corresponding author: Qianqian Liu,  Wei-Lin Dai,  Bo Liu, 
  • Received Date: 10 November 2023
    Revised Date: 15 December 2023
    Accepted Date: 18 December 2023

    Fund Project: This work is supported by National Natural Science Foundation of China (22002102, 61904118, 62205231), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1555) and Jiangsu Key Laboratory for Environment Functional Materials.

  • Directional electron transfer is an appealing strategy for harnessing photogenerated charge separation kinetics. Herein, a novel 2D/1D SnNb2O6/nitrogen-enriched C3N5 S-scheme heterojunction with strong internal electric field (IEF) and dipole field (DF) is designed through in situ growth of C3N5 nanorods on SnNb2O6 nanosheets. The IEF generated at the interface via the formation of the S-scheme heterojunction induces directional charge transfer from SnNb2O6 to C3N5. Simultaneously, the DF within C3N5 provides the impetus to guide photo-excited electrons to the active sites. Consequently, the synergistic effects of IEF and DF facilitate swift directional electron transfer. The optimized SnNb2O6/C3N5 heterojunction demonstrates a remarkable H2 production rate of 1090.0 μmol·g-1·h-1 with continuous release of H2 bubbles. This performance surpasses that of SnNb2O6 and C3N5 by 38.8 and 10.7 times, respectively. Additionally, the SnNb2O6/C3N5 heterojunction exhibits superior activity in the removal of Rhodamine B, tetracycline, and Cr(VI). Based on electron paramagnetic resonance (EPR), time-resolved photoluminescence (TPRL) and density functional theory (DFT) calculations, etc., the directional charge transfer mechanism was systematically explored. The research furnishes a plausible approach to construct effective heterojunction photocatalysts for applications in energy and environmental domains.
  • 加载中
    1. [1]

      (1) Liu, Q.; Du, X.; Gu, H.; Cheng, M.; Hu, J.; Wei, T.; Li, W.; Liu, B.; Dai, W.-L. J. Phys. D: Appl. Phys. 2022,55, 484002. doi: 10.1088/1361-6463/ac962e

    2. [2]

      (2) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4

    3. [3]

      (3) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    4. [4]

      (4) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643

    5. [5]

      (5) Shi, W.-L.; Xu, Z.; Shi, Y.-X.; Li, L.-L.; Lu, J.-L.; Sun, X.-H.; Du, X.; Guo, F.; Lu, C.-Y. Rare Met. 2023,43, 198. doi: 10.1007/s12598-023-02403-z

    6. [6]

      (6) Yang, F.; Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Dai, W.-L. Appl. Catal. B-Environ. 2020, 278, 119290. doi: 10.1016/j.apcatb.2020.119290

    7. [7]

      (7) Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2023, 100208. doi: 10.1016/j.esci.2023.100208

    8. [8]

      (8) Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Chang, S.; Huang, Y.; Gao, L.; Cui, Y.; Liu, R.; Dai, W.-L. Appl. Catal. B-Environ. 2023, 328, 122537. doi: 10.1016/j.apcatb.2023.122537

    9. [9]

    10. [10]

    11. [11]

      (11) Li, L.; Zhang, Q.; Wang, X.; Zhang, J.; Gu, H.; Dai, W.-L. J. Phys. Chem. C 2021, 125, 10964. doi: 10.1021/acs.jpcc.1c02269

    12. [12]

    13. [13]

      (13) Chellapandi, T.; Madhumitha, G.; Roopan, S. M.; Manjupriya, R.; Arunachalapandi, M.; Pouthika, K.; Elamathi, M. Sep. Purif. Technol. 2023, 307, 122865. doi: 10.1016/j.seppur.2022.122865

    14. [14]

      (14) Xiong, Z.; Liang, Y.; Yang, J.; Yang, G.; Jia, J.; Sa, K.; Zhang, X.; Zeng, Z. Sep. Purif. Technol. 2023, 306, 122522. doi: 10.1016/j.seppur.2022.122522

    15. [15]

      (15) Li, Z.; Zhou, Y.; Zhou, Y.; Wang, K.; Yun, Y.; Chen, S.; Jiao, W.; Chen, L.; Zou, B.; Zhu, M. Nat. Commun. 2023, 14, 5742. doi: 10.1038/s41467-023-41522-0

    16. [16]

      (16) Liu, Z.; Zhang, C.; Liu, L.; Zhang, T.; Wang, J.; Wang, R.; Du, T.; Yang, C.; Zhang, L.; Xie, L.; et al.. Adv. Mater. 2021, 33, 2104099. doi: 10.1002/adma.202104099

    17. [17]

      (17) Zhang, J.; Gu, H.; Wang, X.; Zhang, H.; Chang, S.; Li, Q.; Dai, W.-L. J. Colloid Interface Sci. 2022,625, 785. doi: 10.1016/j.jcis.2022.06.074

    18. [18]

      (18) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023,162, 90. doi: 10.1016/j.jmst.2023.03.054

    19. [19]

      (19) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010

    20. [20]

    21. [21]

      (21) Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Chem. Eng. J. 2020, 379, 122264. doi: 10.1016/j.cej.2019.122264

    22. [22]

      (22) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009

    23. [23]

      (23) He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, e202313172. doi: 10.1002/anie.202313172

    24. [24]

    25. [25]

      (25) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317

    26. [26]

      (26) Liu, Q.; Zhang, Q.; Liu, B.; Dai, W.-L. Nanotechnology 2021, 32, 065705. doi: 10.1088/1361-6528/abc3e3

    27. [27]

      (27) Wang, Z.; Wang, H.; Shi, Y.; Liu, C.; Wu, L. Chem. Eng. J. 2022, 429, 132018. doi: 10.1016/j.cej.2021.132018

    28. [28]

      (28) Cao, J.-T.; Ma, Y.; Lv, J.-L.; Ren, S.-W.; Liu, Y.-M. Chem. Commun. 2020, 56, 1513. doi: 10.1039/C9CC09102E

    29. [29]

      (29) Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. ACS Sustain. Chem. Eng. 2019, 7, 625. doi: 10.1021/acssuschemeng.8b04182

    30. [30]

      (30) Liang, S.; Liang, R.; Wen, L.; Yuan, R.; Wu, L.; Fu, X. Appl. Catal. B-Environ. 2012, 125, 103. doi: 10.1016/j.apcatb.2012.05.017

    31. [31]

      (31) Yuan, L.; Yang, M.-Q.; Xu, Y.-J.Nanoscale 2014, 6, 6335. doi: 10.1039/C4NR00116H

    32. [32]

      (32) Vadivel, S.; Hariganesh, S.; Paul, B.; Rajendran, S.; Habibi-Yangjeh, A.; Maruthamani, D.; Kumaravel, M. Chem. Phys. Lett. 2020, 738, 136862. doi: 10.1016/j.cplett.2019.136862

    33. [33]

      (33) Pagacz-Kostrzewa, M.; Bronisz, R.; Wierzejewska, M. Chem. Phys. Lett. 2009, 473, 238. doi: 10.1016/j.cplett.2009.03.079

    34. [34]

      (34) Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Sol. RRL2018, 2, 1800006. doi: 10.1002/solr.201800006

    35. [35]

      (35) Katritzky, A. R. Chem. Heterocycl. Compd. 1972, 8, 917. doi: 10.1007/BF00476314

    36. [36]

      (36) Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T.Adv. Mater. 2017, 29, 1605148. doi: 10.1002/adma.201605148

    37. [37]

      (37) Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B-Environ. 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844

    38. [38]

      (38) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    39. [39]

      (39) Wang, L.; Chen, R.; Zhang, Z.; Chen, X.; Ding, J.; Zhang, J.; Wan, H.; Guan, G. J. Environ. Chem. Eng. 2023,11, 109345. doi: 10.1016/j.jece.2023.109345

    40. [40]

      (40) Cui, Y.; Zhang, G.; Lin, Z.; Wang, X. Appl. Catal. B-Environ. 2016, 181, 413. doi: 10.1016/j.apcatb.2015.08.018

    41. [41]

      (41) Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1

    42. [42]

      (42) Li, Q.; Kako, T.; Ye, J. Int. J. Hydrog. Energy 2011, 36, 4716. doi: 10.1016/j.ijhydene.2011.01.082

    43. [43]

      (43) Atuchin, V. V.; Kalabin, I. E.; Kesler, V. G.; Pervukhina, N. V. J. Electron Spectrosc. 2005,142, 129. doi: 10.1016/j.elspec.2004.10.003

    44. [44]

      (44) Ding, J.; Wang, L.; Liu, Q.; Chai, Y.; Liu, X.; Dai, W.-L. Appl. Catal. B-Environ. 2015, 176–177, 91. doi: 10.1016/j.apcatb.2015.03.028

    45. [45]

      (45) Wang, H.; Yu, J.; Zhan, X.; Chen, L.; Sun, Y.; Shi, H. Appl. Surf. Sci. 2020, 528, 146938. doi: 10.1016/j.apsusc.2020.146938

    46. [46]

    47. [47]

      (47) Jiang, D.; Wen, B.; Zhang, Y.; Jin, Y.; Li, D.; Chen, M. J. Colloid Interface Sci. 2019, 536, 1. doi: 10.1016/j.jcis.2018.10.027

    48. [48]

      (48) Luo, B.; Hong, Y.; Li, D.; Fang, Z.; Jian, Y.; Shi, W. ACS Sustain. Chem. Eng. 2018, 6, 14332. doi: 10.1021/acssuschemeng.8b03006

    49. [49]

      (49) Jin, Y.; Jiang, D.; Li, D.; Xiao, P.; Ma, X.; Chen, M. ACS Sustain. Chem. Eng. 2017, 5, 9749. doi: 10.1021/acssuschemeng.7b01548

    50. [50]

      (50) Wang, H.; Chen, L.; Sun, Y.; Yu, J.; Zhao, Y.; Zhan, X.; Shi, H. Sep. Purif. Technol. 2021, 265, 118516. doi: 10.1016/j.seppur.2021.118516

    51. [51]

      (51) Butler, M. A. J. Appl. Phys.1977, 48, 1914. doi: 10.1063/1.323948

    52. [52]

      (52) Wu, L.; Yang, X.; Chen, T.; Li, Y.; Meng, Q.; Zhu, L.; Zhu, W.; He, R.; Duan, T. Chem. Eng. J. 2022,427, 131773. doi: 10.1016/j.cej.2021.131773

    53. [53]

      (53) Zhang, Z.; Jiang, D.; Li, D.; He, M.; Chen, M. Appl. Catal. B-Environ. 2016, 183, 113. doi: 10.1016/j.apcatb.2015.10.022

    54. [54]

      (54) Fang, C.; Hu, X.; Du, X.; Mao, G.; Wang, X.; Wang, L.; Liu, Q.; Ding, J. Appl. Catal. A 2023, 652, 119032. doi: 10.1016/j.apcata.2023.119032

    55. [55]

      (55) Wan, C.; Zhou, L.; Sun, L.; Xu, L.; Cheng, D.-G.; Chen, F.; Zhan, X.; Yang, Y. Chem. Eng. J. 2020,396, 125229. doi: 10.1016/j.cej.2020.125229

    56. [56]

      (56) Xu, Q.; Cheng, B.; Yu, J.; Liu, G. Carbon 2017, 118, 241. doi: 10.1016/j.carbon.2017.03.052

    57. [57]

      (57) Yu, W.; Zhang, S.; Chen, J.; Xia, P.; Richter, M. H.; Chen, L.; Xu, W.; Jin, J.; Chen, S.; Peng, T. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/C8TA02922A

    58. [58]

    59. [59]

    60. [60]

      (60) Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Chem. Eng. J. 2021,406, 126776. doi: 10.1016/j.cej.2020.126776

    61. [61]

      (61) Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. Adv. Mater. 2018, 30, 1706108. doi: 10.1002/adma.201706108

    62. [62]

      (62) Thenuwara, A. C.; Cerkez, E. B.; Shumlas, S. L.; Attanayake, N. H.; Mckendry, I. G.; Frazer, L.; Borguet, E.; Kang, Q.; Remsing, R. C.; Klein, M. L.; et al. Angew. Chem. Int. Ed.2016, 55, 10381. doi: 10.1002/anie.201601935

    63. [63]

      (63) Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409

    64. [64]

      (64) Hua, J.; W, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    65. [65]

      (65) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8

    66. [66]

      (66) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1

    67. [67]

      (67) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1

  • 加载中
    1. [1]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(3)
  • Abstract views(632)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return